

PRELIMINARY SITE INVESTIGATION

N10057

IdealCorp

PROPOSED DEVELOPMENT AT:

124 New England Highway,

Lochinvar NSW 2321

23rd October 2024

Report Distribution

Preliminary Site Investigation

Address: 124 New England Highway, Lochinvar NSW 2321

Report No: N10057

Date: 23rd October 2024

Copies	Recipient	/Custodian
COPICS	14001DICIII	/ C

1 Soft Copy (PDF) – Secured and issued by email

IdealCorp

1 Original – Saved to NEO Consulting Archives Secured and Saved by NEO Consulting on Register.

Version	Prepared by	Reviewed by	Date issue
Draft	Ehsan Zare Environmental Consultant	Nick Caltabiano Project Manager	22 nd October 2024
	E. Zarc	plate.	
FINAL	Ehsan Zare Environmental Consultant	Nick Caltabiano Project Manager	23 rd October 2024
	E. Zare	plate	

Report Revision	Details	Report No.	Date	Amended By
0	FINAL Report	N10057	23.10.2024	-
ssued By:	•			
,.				
			1/64	
			1.04	

Nick Caltabiano

This report may only be reproduced or reissued in electronic or hard copy format by its rightful custodians listed above, with written permission by NEO Consulting. This report is protected by copyright law.

Table of Contents

Executive Summary	5
1. Introduction	7
1.1 Background	7
1.2 Objectives	7
1.3 Trigger for Assessment	7
1.4 Regulatory Framework	7
2. Scope of Work	7
3. Site Details	8
4. Site Condition	8
5. Site History	9
5.1 History of Site	9
5.2 Section 10.7 (2) Planning Certificate	9
5.3 NSW EPA Contaminated Land Register	9
5.4 Protection of the Environment Operation Act (POEO) Public Register	9
5.5 SafeWork NSW Hazardous Goods	9
5.6 Product Spill and Loss History	9
5.7 PFAS Investigation Program	9
6. Environmental Setting	10
6.1 Geology	10
6.2 Soil Landscape	10
6.3 Groundwater	10
6.4 Topography	10
6.5 Site Drainage	10
6.6 Acid Sulphate Soils	10
7. Areas of Environmental Concern	11
8. Conceptual Site Model	12
9. Assessment Criteria	14
9.1 NEPM Health Investigation Level A (HIL-A) – Residential	14
9.2 NEPM Health Screening Level A (HSL-A) – Residential	15
9.3 NEPM Ecological Investigation Level (EIL) – Urban Residential and Public Open Space	15
9.4 NEPM Ecological Screening Level (ESL) – Urban Residential and Public Open Space	16
9.5 NEPM Management Limits – Residential, Parkland and Public Open Space	16
9.6 NEPM Health Screening Level A (HSL-A) – Residential for Asbestos	17
10. Sampling and Analysis Plan	18
10.1 Sampling Rationale	18
10.2 Field Sampling Methodology	18
11. Analytical Results	20
11.1 Soil Analytical Results	20
11.2 QA/QC Results	20
12. Data Gaps	21

13. Conclusion	21
14. Recommendations	22
References	23
imitations	24

Appendices

Appendix A – Figures and Site Photographic Log

Appendix B - QA/QC Discussion

Appendix C – Laboratory Results and Chain of Custody (NATA)

Appendix D – Property Report and Relevant Information

Appendix E – Test Pit Logs

Executive Summary

NEO Consulting were appointed by IdealCorp (the client) to undertake a Preliminary Site Investigation (PSI) for the property located at No. 124 New England Highway, Lochinvar NSW 2321 (the site). The site is legally identified as Lots 1, 2 & 3/-/DP1052148 and has an area of approximately 2,878m². The site is currently zoned as R1 - General Residential.

NEO Consulting understands that the proposed development for the site includes:

- 1- Demolition of onsite dwelling within southern portion of the site; and
- 2- Construction of a childcare centre within southern portion of the site.

The objective of this PSI was to provide a preliminary assessment of potentially contaminating activities which may have impacted the site. The scope of work undertaken includes:

- A site inspection to identify potential sources of contamination;
- Soil sampling to identify any contaminants (if present);
- Historical investigations relating to the site (if any);
- Local Council records and planning certificates;
- NSW Environment Protection Authority (EPA) environmental contaminated lands register;
- Protection of the Environment Operations (POEO) Act public register;
- Dial-Before-You-Dig enquiry for an evaluation into local underground services and assets;
- Review of local geological and hydrogeological information, including an evaluation of the WaterNSW registered groundwater bore database; and
- Acid Sulphate Soils (ASS) data maps

A site investigation was undertaken on the 14th October 2024 by qualified environmental consultants. During the site inspection, a soil investigation program was undertaken with a judgemental approach within the site to identify areas of contamination. Four (4) soil samples were obtained from the topsoil (0-0.15m). The samples were submitted to a National Association of Testing Authorities, Australia (NATA) accredited laboratory for analysis of Chemicals of Potential Concern (CoPC) that may have impacted the site during historical or present activities.

Historical aerial images indicate that the site contained a building structure and a few sheds in the southwestern portion. The remainder area of the site was free of structures. The original structure was demolished and replaced with the current residential dwelling in the 2000s along with construction of the sheds and an aviary structure within northern portion. The site has remained in its current state since at least 2010.

The soil underlying the site consists of dark brown silty sandy clay topsoil to a depth of approximately 0.4 m, followed by natural brown silty clay beyond that depth. No visible Potential Asbestos-Containing Material (PACM) was observed, and no hydrocarbon staining, or odour was detected in any of the excavated test pits. Coarse gravel imported as fill material was used for the driveway, extending from the road to the shed at the rear of the site.

Analytical results indicated that all analytes were below the laboratory limit of reporting (LOR) and/or the NEPM 2013 Health and Ecological Assessment Criteria for Residential (A) developments, except for asbestos (AF/FA) detected in one sample (BH1). The presence of Asbestos is likely linked to the demolition of the original building structure in the southwestern portion of the site and requires further delineation.

Considering the site's history, analytical results, and the age of development in the northern portion (2000s), the likelihood of contamination in this area is very low. However, the southern portion of the site requires further investigation. Data gaps remain, including the extent of asbestos contamination in the southwestern portion and the condition of soils beneath the on-site structure in this area. Therefore, post-demolition soil sampling should be conducted from areas beneath onsite structures and hardstands to address these data gaps.

A <u>Remedial Action Plan (RAP)</u> should be prepared to delineate and manage the Asbestos contamination. The RAP should outline the steps for post-demolition sampling, data gap investigation, and remediation strategy and goals in order to make the site suitable for future proposed development.

In compliance with NEPM Schedule B1, which refers to the WA Department of Health (DoH) Asbestos Contaminated Sites in WA Guidelines, post-demolition sampling should be conducted at a rate twice that specified in Table 2 of NSW EPA, Contaminated Land Guidelines, Sampling Design Part 1 – Application (2022). Test holes should be evenly distributed across the targeted area, with additional sampling occurring every 5 to 10 meters for building footprints or demolished structure footprints, especially those dating back to pre-1987.

Based on the site investigation and analytical results, NEO Consulting finds that the site <u>can be made</u> <u>suitable</u> for the proposed subdivision and development for Residential (A) land use, provided the recommendations within **Section 14** are undertaken.

1. Introduction

1.1 Background

NEO Consulting were appointed by IdealCorp (the client) to undertake a Preliminary Site Investigation (PSI) for the property located at No. 124 New England Highway, Lochinvar NSW 2321 (the site). The site is legally identified as Lots 1, 2 & 3/-/DP1052148 and has an area of approximately 2,878m². The site is currently zoned as R1 - General Residential.

A site inspection was undertaken on 14th October 2024 by qualified environmental consultants. Reporting, photographs and sampling were conducted on this day and with reference to the relevant regulatory criterial (2. Scope of Work). Further information of the inspection is described in 4. Site Condition.

NEO Consulting understands that the proposed development for the site includes:

- 1- Demolition of onsite dwelling within southern portion of the site; and
- 2- Construction of a childcare centre within southern portion of the site.

1.2 Objectives

This report provides a preliminary assessment of current and/or historical potentially contaminating activities that may have impacted the soils and will determine if the site is suitable for the proposed development.

1.3 Trigger for Assessment

The trigger for assessment is to support a Development Application (DA) that will be submitted to Maitland City Council.

1.4 Regulatory Framework

This PSI has been prepared in general accordance with the following regulatory framework:

- State Environmental Planning Policy (Resilience and Hazard) 2021;
- National Environment Protection Measures (NEPM), 2013;
- NSW Environmental Protection Authority, Guidelines on the Duty to Report Contamination under Contaminated Land Management Act, 1997;
- NSW Environmental Protection Authority, Consultants Reporting on Contaminated Land: Contaminated Land Guidelines, 2020;
- Protection of the Environment and Operation Act 1997
- Protection of the Environment Operations (Waste) Regulations, 2005;
- Maitland Local Environmental Plan (2011); and
- Maitland Development Control Plan (2011).

2. Scope of Work

To meet the requirements in Section 1.3 of this report, the following scope of works were included:

- A site inspection to identify potential sources of contamination on site;
- Soil sampling to identify any contaminants (if present);
- Historical investigations relating to the site (if any);
- Review of current and historical Certificates of Title and Local Council records and planning certificates and NSW EPA Contaminated Land Records and NSW POEO Register;
- Review of local geological and hydrogeological information, including an evaluation of the NSW Groundwater registered groundwater bore database;
- Review of Acid Sulphate Soil data maps;
- Development of a Conceptual Site Model (CSM) to identify the connections between potential sources of contamination and exposure pathways, human and/or ecological receptors; and
- Recommendations for additional investigations (if any), based on the identified data gaps and findings of this report.

O PO Box 279 Riverstone NSW 2765

□ admin@neoconsulting.com.au

0455 485 502

3. Site Details

Table 1. Site Details	
Address	No. 124 New England Highway, Lochinvar NSW 2321
Deposited plan	Lots 1, 2 & 3/-/DP1052148
Zoning	R1 - General Residential
Locality map	Figure 1, Appendix A
Site Boundary	Figure 2, Appendix A
Area	2,878m ²
LGA	Maitland City Council
Site Coordinates	-32.700392, 151.448167
GDA 94	354537.42mE, : 6380853.95mS, 56H

Table 2. Surrounding land-use

Direction from site	Land-use
North	Residential Property
East	Residential Property
South	New England Highway
West	Residential Property

4. Site Condition

A site inspection was undertaken on 14th October 2024 by NEO Consulting. During the site inspection, the following observations were noted (photographs in **Appendix A**):

- The site contained a residential dwelling at the front and two sheds at the rear.
- The dwelling was a single-storey, fibrocement-clad building.
- One shed had fibrocement-clad walls, while the other had metal-clad walls.
- The front and rear portions of the site were covered with lawn.
- Coarse gravel, used as fill material, was imported for the driveway, which extended from the road to the shed at the rear of the site.
- The soil underlying the site consisted of dark brown silty sandy clay topsoil to a depth of approximately 0.4 m, followed by natural brown silty clay below that depth.
- No visible Potential Asbestos-Containing Material (PACM) was observed, and no hydrocarbon staining, or odour was detected in any of the excavated test pits.
- The site had a sloping gradient from west to east.

The nearest human receptors include adjoining residential properties, and environmental receptor includes Lochinvar Creek located ~170m south of the site.

5. Site History

5.1 History of Site

Historical aerial images indicate that the site contained a building structure and a few sheds in the southwestern portion. The remainder area of the site was free of structures. The original structure was demolished and replaced with the current residential dwelling in the 2000s along with construction of the sheds and an aviary structure within northern portion. The site has remained in its current state since at least 2010.

A summary of available historical aerial imagery is contained below, and the images referenced can be seen in **Appendix A**.

Table 3. Historical aerial images of the site and surrounding area.

Year	Description
1971	The site contained a building structure and a few sheds within the
	southwestern portion. The surrounding area comprised rural residential
	properties and vacant lands.
1976	The site and surrounding area remained unchanged.
1991	The site and surrounding area remained unchanged.
1994	The site and surrounding area remained unchanged.
2001	The site and surrounding area remained unchanged.
2010	The building structure on the site had been replaced with a new one. Two sheds were constructed in the eastern portion of the site, along with an aviary in the northeastern portion. The site condition remained largely unchanged after these updates. The surrounding area had improved with increased residential development.

5.2 Section 10.7 (2) Planning Certificate

A Section 10.7 Planning Certificate describes how a property may be used and the restrictions on development. The Planning Certificate is issued under Section 149 of the Environmental Planning and Assessment Act 1979. At the time of reporting, the Planning Certificate was not available.

5.3 NSW EPA Contaminated Land Register

A search within the NSW EPA contaminated land register was undertaken for the site. No results were found for the site and 500m radius of the site.

5.4 Protection of the Environment Operation Act (POEO) Public Register

A search on the POEO public register of licensed and delicensed premises (DECC) was undertaken for the site. No results were found for the site and 500m radius of the site.

5.5 SafeWork NSW Hazardous Goods

A search was not undertaken with SafeWork NSW for historical dangerous goods stored onsite. No evidence of underground storage of chemicals was encountered during the site inspection.

5.6 Product Spill and Loss History

The visual site inspection did not identify evidence of surface and subsurface stating within the site.

5.7 PFAS Investigation Program

NEO CONSULTING PTY LTD

The NSW Government PFAS Investigation Program map indicates the site is not currently listed or located within 1km of a listed site for PFAS contamination investigation and management programs.

6. Environmental Setting

6.1 Geology

Data obtained from the minview.geoscience.nsw.gov.au indicates that the site is underlain by Lochinvar Formation. This formation regionally consists of basalt, siltstone and sandstone.

6.2 Soil Landscape

A review of the regional maps by the NSW Department of Planning, Industry and Environment indicates the site is generally located within the Lochinvar soil landscape. This soil landscape covers undulating rises around the village of Lochinvar; Elevation ranging from 20 - 80 m; Local relief is around 20 m, with slope gradients of 4 - 6%; Average slope lengths are 800 - 1,000 m. Drainage lines occur at 400 - 800 m intervals.

The main soils are Non-calcic Brown Soils on the gentle slopes with Brown Podzolic Soils on the steeper areas. There are Yellow Solodic Soils on the mid to lower slopes of the steeper hills and in some drainage lines.

6.3 Groundwater

A groundwater bore search was conducted on 22nd October 2024. No Bore was found within 1km radius of the site.

It was beyond the scope of works to study the groundwater flow direction. However, based on the regional topography, groundwater is expected to flow south towards Lochinvar Creek located ~170m south of the site.

6.4 Topography

The site has a sloping gradient from west (41.30m AHD) to east (39.35m AHD). The regional topography surrounding the site has a gentle sloping (<5%) towards south.

6.5 Site Drainage

Site drainage is likely consistent with the local topography. Stormwater probably flows south via the municipal stormwater system and reaches Lochinvar Creek located ~170m south of the site.

6.6 Acid Sulphate Soils

To determine whether there is a potential for ASS to be present at the site, information was reviewed utilising the NSW Department of Planning, Industry and Environment eSPADE map viewer. The ASS risk maps show the chance of acid sulphate soil occurrence. This search indicated that there is "no known occurrence" of ASS underlying the soil at this site.

7. Areas of Environmental Concern

Based on the above information, the potential Areas of Environmental Concern (AEC) and their associated Contaminants of Potential Concern (CoPC) for the site were identified and summarised (**Table 4**).

Table 4. Potential Areas and Contaminants of Concern

AEC	Potentially Contaminating / Hazardous Activity	CoPC	Likelihood of Site Impact	Comments
Entire site	Site activities	TRH, BTEX, PAH, OCP/OPP, PCBs,	Low	No staining was observed within the site.
	Onsite Carparking	Metals, Asbestos		
Southwestern portion	Hazardous materials from weathering and demolition of original onsite structure in this area	Asbestos	High	PSI confirmed presence of ACM (AF/FA) within this area.
Onsite structures	Hazardous materials	ACM, Lead (paint and/or dust), PCBs, SMF	Low	Considering the age of current structures (2000s) presence of CoPCs within the fabric of onsite buildings is unlikely.

ABBREVIATIONS: TOTAL RECOVERABLE HYDROCARBONS (TRH), BENZENE TOLUENE ETHYLBENZENE AND XYLENE (BTEX), POLYCYCLIC AROMATIC HYDROCARBON (PAH), ORGANOCHLORINE PESTICIDES (OCPS), ORGANOPHOSPHORUS PESTICIDES (OPPS), POLYCHLORINATED BIPHENYLS (PCBS), ASBESTOS CONTAINING MATERIALS (ACM), HAZARDOUS MATERIALS SURVEY (HMS), OZONE DEPLETING SUBSTANCES (ODS), SYNTHETIC MINERAL FIBRES (SMF), POLYCHLORINATED BIPHENYLS (PCBS), METALS INCLUDING ARSENIC (AS), CADMIUM (CD), CHROMIUM (CR), COPPER (CU), LEAD (PB), NICKEL (NI), ZINC (ZN) AND MERCURY (HG).

8. Conceptual Site Model

A Conceptual Site Model (CSM) was developed to provide an indication of potential risks associated with contamination source and contamination migration pathways, receptors and exposure mechanisms. The CSM provides a framework for the review of the reliability and useability of the data collected and to identify data gaps in the existing site characterisation. Here, we consider the connections between the following elements:

- Potential contamination sources and their associated CoPC;
- Potential human receptors that may be impacted by the site contamination are current and future site users including occupants to the dwelling/infrastructures onsite, site workers and the general public within the immediate vicinity of the site;
- Potential environmental receptors to the site including but not limited to: groundwater and surface water bodies, residual soils at and/or nearby the site;
- Potential exposure pathways; and
- Whether source-pathway-receptor connections are complete based on current and future site
 conditions.

Table 5. Conceptual Site Model

Potential Sources and Mechanism of Contamination	Potential Receptor	Potential Exposure Pathway	Complete connection	Risk	Justification/ Control Measures
Site activities (Top down) Onsite Carparking (Top down)	Future site occupant, construction workers, general public,	Dermal contact, inhalation/ ingestion of particulates.	Complete (current)	Low	Exposure to potentially contaminated soils is possible due to unsealed surfaces.
Hazardous materials from weathering and demolition of original	surrounding sensitive receptors		Complete (Future)	Low	If present, impacted soils are to be disposed of off-site in accordance with an unexpected finds protocol.
onsite structure (Top down)	Natural soils	Migration of contamination from fill layer.	Complete (current)	Low	If contamination is present in the fill layer, migration to the natural layer is likely to be limited.
			Complete (Future)	Low	If present, impacted soils are to be disposed of off-site.
	Lochinvar Creek (~170m S)	Migration of impacted groundwater and surface water runoff.	Incomplete (current)	Low	The local topography surrounding the site falls toward Lochinvar Creek (~170m S). It is possible surface waters from the site reach this waterway.

		Incomplete (future)	Low	If present, contaminated soils and groundwater are likely to be remediated.
Underlying aquifer	Leaching and migration of contaminants through	Incomplete (current)	Low	leachability of contaminants is possible.
	groundwater infiltration.	Incomplete (future)	Low	If present, contaminated soil and/or groundwater is likely to be remediated.

9. Assessment Criteria

The following assessment criteria were adopted for the investigation.

9.1 NEPM Health Investigation Level A (HIL-A) – Residential

HILs are scientific, risk-based guidance levels to be used as in the primary stage of assessing soil contamination to evaluate the potential risks to human health from chronic exposure to contaminants. HILs are applicable to a broad range of metals and organic substances, and generally apply to depths up to 3m below the surface for residential use.

Tier 1 HILs are divided into sub-criteria. The sub-criteria appropriate to the site is HIL A – residential with garden/accessible soils.

Table 6. HIL-A

Assessment Criteria	Residential Soil HIL-A, mg/kg
НСВ	10
Heptachlor	6
Chlordane	50
Aldrin & Dieldrin	6
Endrin	10
DDD+DDE+DDT	240
Endosulfan	270
Methoxychlor	300
Mirex	10
Arsenic, As	100
Cadmium, Cd	20
Chromium, Cr	100
Copper, Cu	6,000
Lead, Pb	300
Nickel, Ni	400
Zinc, Zn	7,400
Mercury, Hg	40
Carcinogenic PAHs (as BaP TEQ)	3
Total PAH (18)	300
Total PCBs	1

9.2 NEPM Health Screening Level A (HSL-A) – Residential

HSLs have been developed for selected petroleum compounds and fractions and are used for the assessment of potential risks to human health from chronic inhalation and direct contact pathways of petroleum vapour emanating off petroleum contaminated soils (Vapour Risk). HSLs are guided by land-use scenarios, specific soil physicochemical properties and generally apply to depths below surface to >4m.

Tier 1 HSLs are divided into sub-criteria. The sub-criteria appropriate to the site is HSL A – residential with garden/accessible soils. NL = Not Limiting.

Table 7. HSL-A

Assessment Criteria	Residential Soil HSL-A for Vapour Intrusion, 0-<1m depth, Clay, mg/kg	Residential Soil HSL-A for Vapour Intrusion, 1-<2m depth, Clay, mg/kg
Benzene	0.7	1
Toluene	480	NL
Ethylbenzene	NL	NL
Xylenes	110	310
Naphthalene	5	NL
TRH C ₆ -C ₁₀ - BTEX (F1)	50	90
TRH >C ₁₀ -C ₁₆ - N (F2)	280	NL

9.3 NEPM Ecological Investigation Level (EIL) – Urban Residential and Public Open Space

Ecological investigation levels (EILs) have been developed to assess the risk for the presence of metals and organic substance in a terrestrial ecosystem. ElLs are guided by land-use scenarios, specific soil physicochemical properties and generally apply to the top 2m of soil. ElLs can be applied for arsenic (As), copper (Cu), chromium III (Cr(III)), dichlorodiphenyltrichloroethane (DDT), naphthalene, nickel (Ni), lead (Pb) and zinc (Zn). The NEPM Soil Quality Guidelines (SQG) for ElLs are calculated using the Added Contamination Limit (ACL) to determine the amount of contamination that had to be added to the soil to cause toxicity, including ambient background concentration (ABC).

Table 8. Generic EIL

Assessment Criteria	Urban Residential and Public Open Space, mg/kg
Arsenic, As	100
Lead, Pb	1100
DDT	640
Naphthalene	370

9.4 NEPM Ecological Screening Level (ESL) – Urban Residential and Public Open Space

ESLs have been developed for selected petroleum hydrocarbons (BTEX, benzo(a)pyrene, TRH F1 and F2) in soil, based on fresh contamination. These parameters are applicable to coarse and fine-grained soil and apply from the surface of the soil to 2m below ground level, which corresponds with the root and habitat zone for many species.

Table 9. ESL

Assessment Criteria	Residential and Public Open Spaces, Fine-Grained Soil, mg/kg
Benzene	65
Toluene	105
Ethylbenzene	125
Xylenes	45
BaPyr (BaP)	0.7
TRH C ₆ -C ₁₀	180
TRH >C ₁₀ -C ₁₆	120
TRH >C ₁₆ -C ₃₄ (F3)	1,300
TRH >C ₃₄ -C ₄₀ (F4)	5,600

9.5 NEPM Management Limits – Residential, Parkland and Public Open Space

Management Limits for petroleum have been developed for prevention of explosive vapour accumulation, prevention of the formation of observable Light Non-Aqueous Phase Liquids (LNAPL) and protection against effects on buried infrastructure. Residential, parkland and public open space limits have been adopted based on the proposed land use

Table 10. Management Limits

Assessment Criteria	Residential, Parkland and Public Open Space, Fine-Grained Soil, mg/kg
TRH C ₆ -C ₁₀	800
TRH >C ₁₀ -C ₁₆	1000
TRH >C ₁₆ -C ₃₄ (F3)	3,500
TRH >C ₃₄ -C ₄₀ (F4)	10,000

9.6 NEPM Health Screening Level A (HSL-A) – Residential for Asbestos

The assessed soil must not contain Asbestos Containing Materials (ACM) in the excess of 0.01%w/w and Asbestos Fines (AF) and Fibrous Asbestos (FA) in excess of 0.001%w/w. Moreover, surface soil within the site must be free of visible ACM, Asbestos Fines (AF) and Fibrous Asbestos (FA).

Table 11. HSL-A for asbestos

Assessment Criteria	Health Screening Level (%w/w) Residential (A)
ACM	0.01%
FA and AF (friable asbestos)	0.001%
All forms of asbestos	No visible asbestos for surface soils

10. Sampling and Analysis Plan

10.1 Sampling Rationale

Table 12. Sampling Rationale

Sampling Criteria	Chosen Approach	Justification
Sampling Pattern	Judgemental sampling pattern within accessible areas	This pattern was selected due to the area of the site, access to underlying soil, the AEC and CoPC as well as the potential heterogeneity of any contamination.
Sampling Density	Four (4) soil samples from four (4) locations.	This sampling density was selected based on the extent of the potential contaminated area to be detected, feasibility, the site history, distribution of current and historical uses on site, location and condition of structures
Sampling Depths	0-0.15m	These depths were selected in compliment with sampling density and to target depths of potential contaminants.

10.2 Field Sampling Methodology

Sampling was undertaken using test pit excavation. Test pits were excavated with a shovel to a depth of ~0.6m bgl. The samples were collected using clean nitril gloves and placed into laboratory 250m sample jars.

Screening / Sieving was conducted on Topsoil material to assess the possible presence of ACM with reference to the relevant guidelines (WA DoH, 2009) and (NEPC, 2013). A subsample was collected in 500ml zip-lock bag from sieved material for analysis of Asbestos from BH1 and BH3 which were located near onsite buildings.

The equipment was decontaminated with detergent and deionised water between samplings. Samples were stored on ice in an esky while on-site and in transit to a NATA accredited laboratory for the analysis of the CoPC under Chain of Custody (COC) documentation.

Borehole and test pit logs are provided in **Appendix E**.

Table 13. Sample details

Sample ID	Depth (m)	Sample Description	Matrix	PID (ppm)
ВН1	0-0.15	Topsoil Sandy to silty CLAY CI: soft, medium plasticity, dark brown, fine-grained sand, trace fine sized gravel, organic, moist, plant rootlets, no visible ACM was observed, no hydrocarbon staining, or odour was detected.	Topsoil	<1.0
BH2	0-0.15	Topsoil Sandy to silty CLAY CI: soft, medium plasticity, dark brown, fine-grained sand, trace fine sized gravel, organic, moist, plant rootlets, no visible ACM was observed, no hydrocarbon staining, or odour was detected.	Topsoil	<1.0
вн3	0-0.15	Topsoil Sandy to silty CLAY CI: soft, medium plasticity, dark brown, fine-grained sand, trace fine sized gravel, organic, moist, plant rootlets, no visible ACM was observed, no hydrocarbon staining, or odour was detected.	Topsoil	<1.0
BH4	0-0.15	Topsoil Sandy to silty CLAY CI: soft, medium plasticity, dark brown, fine-grained sand, trace fine sized gravel, organic, moist, plant rootlets, no visible ACM was observed, no hydrocarbon staining, or odour was detected.	Topsoil	<1.0

 Table 14.
 Laboratory Testing Program

Sample	Analyses
BH1, BH2, BH3 and BH4	TRH, BTEX, PAH, OCP, OPP, PCBs, Metals and Asbestos

11. Analytical Results

11.1 Soil Analytical Results

Analytical results indicated that all analytes were below the laboratory limit of reporting (LOR) and/or the NEPM 2013 Health and Ecological Assessment Criteria for Residential (A) developments, except for asbestos (AF/FA) detected in one sample (BH1). The presence of Asbestos is likely linked to the demolition of the original building structure in the southwestern portion of the site and requires further delineation.

Soil analytical results are provided in the laboratory reports in Appendix C.

11.2 QA/QC Results

SGS laboratory report SE272464 R0 indicates all Data Quality Objectives were met with the exception of the following:

- Matrix Spike:
 - o Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES: Two items—recovery failed to meet acceptance criteria due to matrix interference.
 - o Total Recoverable Hydrocarbons (TRH) in Soil: Two items—recovery failed to meet acceptance criteria due to sample heterogeneity.

Overall, the QA/QC results indicate a good quality data set.

12. Data Gaps

- The presence and extent of hazardous materials within onsite structures; Considering the age of current structures (2000s) presence of CoPCs within the fabric of onsite buildings is unlikely;
- The conditions of soil beneath onsite structures and hardstands within southwestern portion of the site. Considering the proposed demolition post-demolition sampling is required within this area.
- Extent of Asbestos contamination within southwestern portion of the site. Additional Sampling is required.

13. Conclusion

Historical aerial images indicate that the site contained a building structure and a few sheds in the southwestern portion. The remainder area of the site was free of structures. The original structure was demolished and replaced with the current residential dwelling in the 2000s along with construction of the sheds and an aviary structure within northern portion. The site has remained in its current state since at least 2010.

The soil underlying the site consists of dark brown silty sandy clay topsoil to a depth of approximately 0.4 m, followed by natural brown silty clay beyond that depth. No visible Potential Asbestos-Containing Material (PACM) was observed, and no hydrocarbon staining, or odour was detected in any of the excavated test pits. Coarse gravel imported as fill material was used for the driveway, extending from the road to the shed at the rear of the site.

Analytical results indicated that all analytes were below the laboratory limit of reporting (LOR) and/or the NEPM 2013 Health and Ecological Assessment Criteria for Residential (A) developments, except for asbestos (AF/FA) detected in one sample (BH1). The presence of Asbestos is likely linked to the demolition of the original building structure in the southwestern portion of the site and requires further delineation.

Considering the site's history, analytical results, and the age of development in the northern portion (2000s), the likelihood of contamination in this area is very low. However, the southern portion of the site requires further investigation. Data gaps remain, including the extent of asbestos contamination in the southwestern portion and the condition of soils beneath the on-site structure in this area. Therefore, post-demolition soil sampling should be conducted from areas beneath onsite structures and hardstands to address these data gaps.

A <u>Remedial Action Plan (RAP)</u> should be prepared to delineate and manage the Asbestos contamination within southwestern portion of the site. The RAP should outline the steps for post-demolition sampling, data gap investigation, and remediation strategy and goals in order to make the site suitable for future proposed development.

In compliance with NEPM Schedule B1, which refers to the WA Department of Health (DoH) Asbestos Contaminated Sites in WA Guidelines, post-demolition sampling should be conducted at a rate twice that specified in Table 2 of NSW EPA, Contaminated Land Guidelines, Sampling Design Part 1 – Application (2022). Test holes should be evenly distributed across the targeted area, with additional sampling occurring every 5 to 10 meters for building footprints or demolished structure footprints, especially those dating back to pre-1987.

Based on the site investigation and analytical results, NEO Consulting finds that the site <u>can be made</u> <u>suitable</u> for the proposed subdivision and development for Residential (A) land use, provided the recommendations within **Section 14** are undertaken.

14. Recommendations

Based on the information collected and available during this investigation, the following recommendations have been made:

- A <u>Remedial Action Plan (RAP)</u> should be prepared to delineate and manage the Asbestos
 contamination within southwestern portion of the site. The RAP should outline the steps for postdemolition sampling, data gap investigation, and remediation strategy in order to make the site
 suitable for future proposed development.
- The demolition of structures and excavation activity on site be undertaken in accordance with relevant Australian Standards, SafeWork NSW codes of practice and any other applicable requirements;
- Any soils requiring excavation an offsite disposal must be classified in accordance with "Waste Classification Guidelines Part 1: Classifying Waste" NSW EPA (2014);
- Any imported soil materials used for backfilling/levelling should be certified VENM. If the imported soil
 is not certified, it will require validation to confirm its suitability for Residential (A) land use;
- A site specific 'Unexpected Finds Protocol' is to be made available for reference for all occupants and/or site workers in the event unanticipated contamination is discovered, including Asbestos; and
- <u>Site Validation Report (SVR)</u> to document remediation of soil with Asbestos detected, validation of remaining soil after building demolition and remediation to ensure suitability for Residential (A) land use.

References

Statutory Requirements

- National Environment Protection Council Act 1994;
- Protection of the Environment and Operation Act 1997;
- The Contaminated Land Management Act 1997;
- Work Health and Safety Act, 2011.

Regulatory Framework

- State Environmental Planning Policy (Resilience and Hazard) 2021;
- NSW EPA, Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act, 1997;
- NSW EPA, Resource Recovery Order under Part 9, Clause 93 of the Protection of the Environment Operations (Waste) Regulation, 2014;
- NSW EPA, Consultants Reporting on Contaminated Land: Contaminated Land Guidelines, 2020;
- NSW EPA, Contaminated Land Management, Guidelines for the NSW Site Auditor Scheme, 2017 (3rd Edition);
- NSW EPA, Waste Classification Guidelines Part 1: Classifying Waste, 2014;
- NEPC, National Environment Protection (Assessment of Site Contamination) Measures (NEPM), 2013;
- HEPA, PFAS National Environmental Management Plan, Version 2.0, 2020;
- Protection of the Environment Operations (Waste) Regulations, 2005;
- SafeWork NSW, Managing Asbestos in or On Soil, 2014; and
- Work Health and Safety Regulation, 2011.

Limitations

The findings of this report are based on the Scope of Work outlined in Section 2. NEO Consulting performed the services in a manner consistent with the normal level of care and expertise exercised by members of the environmental consulting profession. No warranties, express or implied are made.

The results of this assessment are based upon the information documented and presented in this report. All conclusions and recommendations regarding the site are the professional opinions of NEO Consulting personnel involved with the project, subject to the qualifications made above. While normal assessments of data reliability have been made, NEO Consulting assumes no responsibility or liability for errors in any data obtained from regulatory agencies, statements from sources outside of NEO Consulting, or developments resulting from situations outside the scope of this project.

The results of this assessment are based on the site conditions identified at the time of the site inspection and validation sampling. NEO Consulting will not be liable to revise the report to account for any changes in site characteristics, regulatory requirements, assessment criteria or the availability of additional information, subsequent to the issue date of this report.

NEO Consulting is not engaged in environmental consulting and reporting for the purpose of advertising sales promoting, or endorsement of any client interests, including raising investment capital, recommending investment decisions, or other publicity purposes.

NEO CONSULTING

6. 2 are

Prepared by:

Ehsan Zare

Environmental Consultant

Reviewed by:

Nick Caltabiano

W.left

Project Manager

APPENDIX A

Figures and Photographic Log

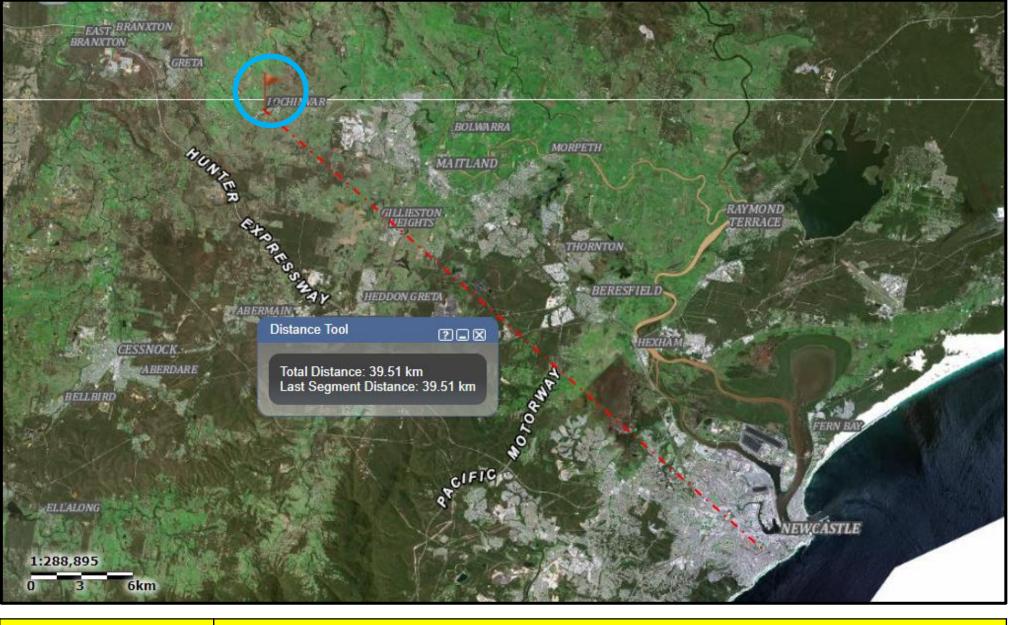

NEO CONSULTING

Figure 1. The site is located approximately 39km northwest of Newcastle CBD.

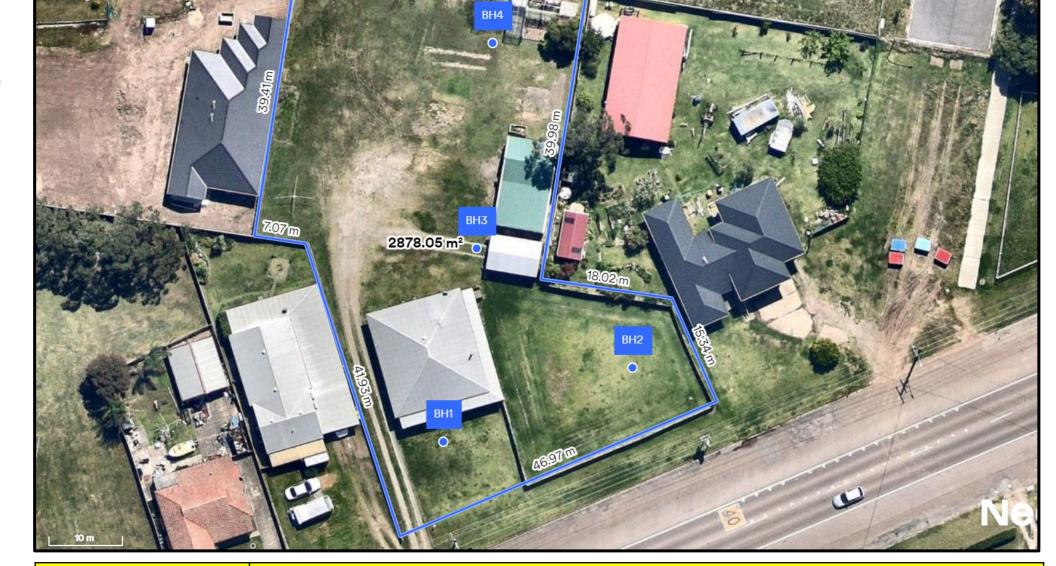

Source: Six Maps

Figure 1	Locality Map
Project	124 New England Highway, Lochinvar NSW 2321

Figure 2. The approximate area of the property is 2,878m². Four (4) soil samples were obtained from the site.

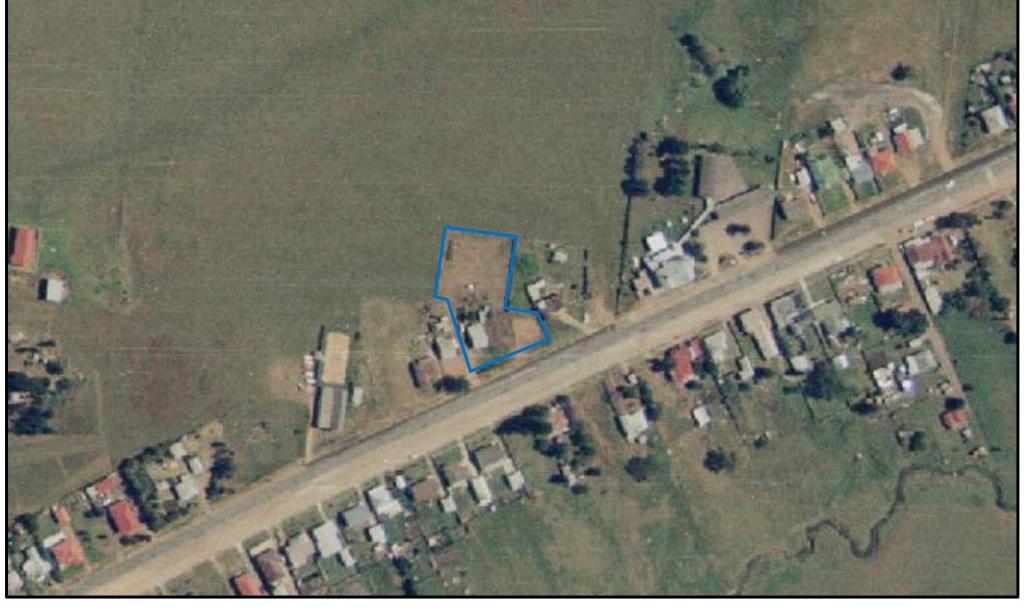
Soil Sample Locations

Source: Nearmap

Figure 2 Site Area

Project 124 New England Highway, Lochinvar NSW 2321

Figure 3. Aerial image of the site and surrounding area 1971. The site contained a building structure and a few sheds within the southwestern portion. The surrounding area comprised rural residential properties and vacant lands.



Source: NSW Historical Imagery

Figure 3	Aerial Image 1971
Project	124 New England Highway, Lochinvar NSW 2321

Figure 4. Aerial image of the site and surrounding area 1976. The site and surrounding area remained unchanged.

Source: NSW Historical Imagery

Figure 4	Aerial Image 1976
Project	124 New England Highway, Lochinvar NSW 2321

Figure 5. Aerial image of the site and surrounding area 1991. The site and surrounding area remained unchanged.


Source: NSW Historical

Imagery

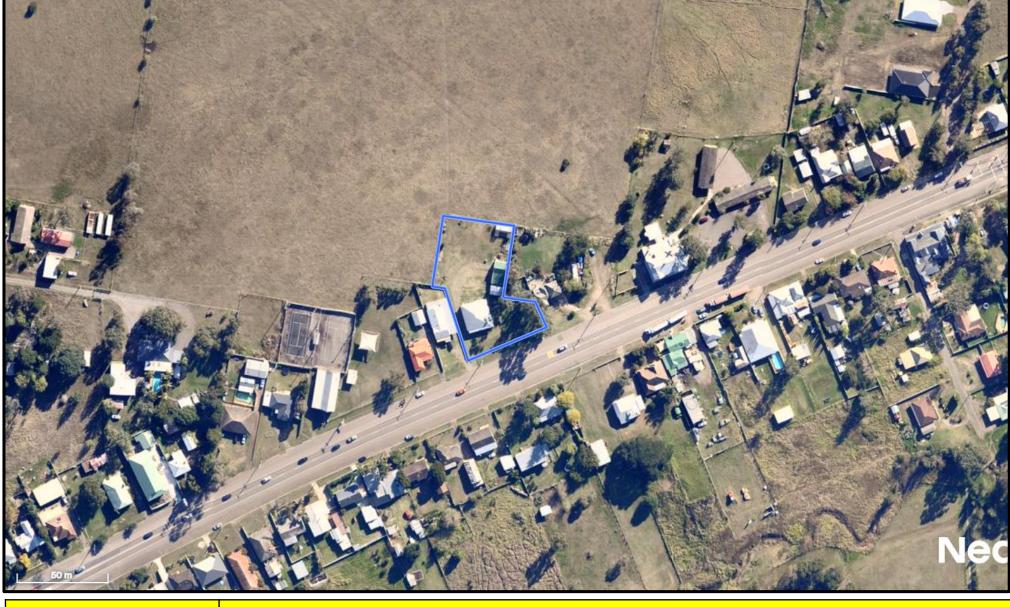
Figure 5	Aerial Image 1991
Project	124 New England Highway, Lochinvar NSW 2321

Figure 6. Aerial image of the site and surrounding area 1994. The site and surrounding area remained unchanged.

Source: NSW Historical

Imagery

Figure 6	Aerial Image 1994
Project	124 New England Highway, Lochinvar NSW 2321


Figure 7. Aerial image of the site and surrounding area 2001. The site and surrounding area remained unchanged.

Source: NSW	Historica
Imagery	

Figure 8. Aerial image of the site and surrounding area 2010. The building structure on the site had been replaced with a new one. Two sheds were constructed in the eastern portion of the site, along with an aviary in the northeastern portion. The site condition remained largely unchanged after these updates. The surrounding area had improved with increased residential development.

Source: NSW Historical Imagery

Figure 8 Aerial Image 2010

Project 124 New England Highway, Lochinvar NSW 2321

Figure 9. Front view of the dwelling within the site.

Figure 10. The sheds within the rear of the site.

Figure 11. Lawn area within southeastern portion of the site.

Figure 12. Gravel and grass groundcover within rear of the site.

Figure 13. BH1 test pit excavation.

Figure 14. BH3 test pit excavation.

APPENDIX B

QA/QC Discussion

NEO CONSULTING

Data Quality Objectives (DQOs)

The DQOs have been developed in accordance with the NEPM Appendix B of Schedule B2 and provide the type, quantity and quality of data to support decisions regarding the environmental conditions of this site.

Table 14. DQOs

Tuble 14. DQOs	
Step 1: State the	NEO Consulting have identified the following risks to human and
problem	environmental receptors:
	- The proposed development for the site includes demolition of
	onsite dwelling within southwestern portion of the site and
	construction of a childcare centre within southern portion of the
	site. The intended future use of the site is considered a sensitive
	human health risk setting.
	Homanneaminsk seming.
Cham On Islamilia	
Step 2: Identify	NEO Consulting considered the site history, the use of this site, and the
the decision/goal	NEPM Guidelines, when identifying the decisions required for the site to be
of the study	considered suitable for its continued land use. The decisions required to
	meet these decisions are as follows:
	- Was the sampling, analysis and quality plan designed appropriate
	to achieve the aim of the report?
	- If present, is on-site contamination capable of migrating off-site?
	- Are there any unacceptable risks to the future on site or off-site
	receptors in the soil or groundwater?
	- Is the site suitable for its continued land use?
Step 3: Identify	NEO Consulting has identified issues of potential environmental concern;
the information	- Appropriate identification of CoPC;
inputs	- Soil sampling and analysis programs across the site;
	- Appropriate quality assurance/quality control to enable an
	evaluation of the reliability of the analytical data; and
	- Screening sampler analytical results against appropriate
	assessment criteria for the intended land use.
	assessment entend for the interlace land use.
Step 4: Define the	The study boundaries are:
boundaries of the	- Lateral boundary: The legally defined area of the site;
study	,
	reached during soil sampling; and
	- Temporal boundary: Constrained to a single visit to the site.
Step 5: Develop	Here, NEO Consulting integrate the information from steps 1 – 4 to support
the analytical	and justify our proposed analytical approach. Our aim is to confirm if the
approach	site is suitable for the proposed development. If the findings of the SAQP
арргоасп	
	identify;
	 Any exceedance of the adopted assessment criteria for soil;

	 Professional opinion that further assessment is required; and/or Adopted RPD for QC data not met. Further assessment may be required to confirm suitability of the site in the form of; Data Gap investigation, Remediation Action Plan and Site Validation.
Step 6: Specify performance or acceptance criteria	For judgemental soil sampling the data must meet the following qualifiers; - Acceptable recovery on all surrogate spikes used in laboratory analyses; - Acceptable analytical method to ensure detection limit appropriate for all analytes; If these conditions are not met, then chemical analysis will require retesting for all samples with fresh aliquot.
Step 7: Optimise the design for obtaining data	Judgemental sampling pattern within the AEC will provide suitable coverage of the site to produce reliable data in alignment with the Data Quality Indicators (DQIs) to cover precision, accuracy, representativeness, completeness and comparability (PARCC). This sampling pattern will ensure that critical locations are assessed and analysed appropriately for COPC.
The DQOs align with CSM	Yes

APPENDIX C

Laboratory Results and Chain of Custody (NATA)

NEO CONSULTING

Table 15. Total Recoverable Hydrocarbon (TRH) analytical results. Values are presented as mg/kg. NL = Not Limiting.

Assess	sment Criteria	TRH C6-C10	TRH C ₆ -C ₁₀ - BTEX (F1)	TRH >C ₁₀ -C ₁₆	TRH >C ₁₀ -C ₁₆ - N (F2)	TRH >C ₁₆ -C ₃₄ (F3)	TRH >C ₃₄ -C ₄₀ (F4)
NEPM 2013 Residential Soil HSL-A for Vapour Intrusion, 0-<1m depth, Clay, mg/kg			50		280		
	ntial Soil HSL-A for Vapour m depth, Clay, mg/kg		90		NL		
Residential and P	Generic ESL for Urban, Jublic Open Spaces, fine- ed soil, mg/kg	180		120		1300	5600
Parkland and Public	ement Limits for Residential, c Open Space, fine-grained bil, mg/kg	800		1000		3500	10 000
Sample	Depth (m)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
BH1	0-0.15	<25	<25	<25	<25	<90	<120
BH2	0-0.15	<25	<25	<25	<25	<90	<120
вн3	0-0.15	<25	<25	<25	<25	<90	<120
BH4	0-0.15	<25	<25	<25	<25	<90	<120

Table 16. Benzene, Toluene, Ethylbenzene and Xylene (BTEX) analytical results. Values are presented as mg/kg. NL = Not Limiting.

Assessment Criteria		Benzene	Toluene	Ethylbenzene	Xylenes
NEPM 2013 Residential Soil HSL-A for Vapour Intrusion, 0-<1m depth, Clay, mg/kg		0.7	480	NL	110
NEPM 2013 Soil ESL for Urban, Residential and Public Open Spaces, fine-grained soil, mg/kg		65	105	125	45
Sample	Depth (m)	mg/kg	mg/kg	mg/kg	mg/kg
BH1	0-0.15	<0.1	<0.1	<0.1	<0.3
BH2	BH2 0-0.15		<0.1	<0.1	<0.3
вн3	0-0.15	<0.1	<0.1	<0.1	<0.3
BH4	0-0.15	<0.1	<0.1	<0.1	<0.3

Table 17. Polycyclic Aromatic Hydrocarbon (PAH) and Polychlorinated biphenyl (PCBs) analytical results. Not Analysed (N.A.)

Assessm	ent Criteria	Naphthalene	Benzo(a)pyrene	Carcinogenic PAH (as BaP TEQ)	Total PAH (18)	Total PCBs
Vapour Intrusion,	dential Soil HSL-A for 0-<1m depth, Clay, ig/kg	5				
Residential and F	Seneric EIL for Urban Public Open Space, 1g/kg	170				
Public Open Space	an, Residential and ces, fine-grained soil, ng/kg		0.7			
NEPM 2013 Reside	ntial Soil HIL-A, mg/kg		1.00 TEF	3	300	1
Sample	Depth (m)	mg/kg	mg/kg	TEQ (mg/kg)	mg/kg	mg/kg
BH1	0-0.15	<0.1	<0.1	<0.3	<0.8	<1
BH2	0-0.15	<0.1	<0.1	<0.3	<0.8	<1
ВН3	0-0.15	<0.1	<0.1	<0.3	<0.8	<1
BH4	0-0.15	<0.1	<0.1	<0.3	<0.8	<1

Table 18. Heavy Metal analytical results. Values are presented as mg/kg.

Assessme	ent Criteria	Arsenic, As	Cadmium, Cd	Chromium, Cr	Copper, Cu	Lead, Pb	Nickel, Ni	Zinc, Zn	Mercury, Hg
NEPM 2013 Resider	ntial Soil HIL-A, mg/kg	100	20	100	6000	300	400	7400	40
	IL for Urban Residential and Space, mg/kg	100				1100			
Sample	Depth (m)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
BH1	0-0.15	4	<0.3	19	13	97	8.2	160	0.37
BH2	0-0.15	<1	<0.3	5.2	1.5	1	4.4	11	<0.05
внз	0-0.15	4	<0.3	22	6.5	13	6.9	62	<0.05
BH4	0-0.15	2	<0.3	19	3.3	8	4.6	7.3	<0.05

Table 19. Pesticides analytical results. Values are presented as mg/kg. Not Analysed (N.A.)

Assessmer	nt Criteria	НСВ	Heptachlor	Chlordane	Aldrin & Dieldrin	Endrin	DDT	DDD+DDE +DDT	Endosulfan	Methoxychlor	Mirex
NEPM 2013 Resid mg/	•	10	6	50	6	10		240	270	300	10
NEPM 2013 Soil Urban Residential Space,	and Public Open						180				
Sample	Depth (m)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
BH1	0-0.15	<0.1	<0.2	<0.2	<0.3	<0.2	<0.2	<0.6	<0.5	<0.1	<0.1
BH2	0-0.15	<0.1	<0.2	<0.2	<0.3	<0.2	<0.2	<0.6	<0.5	<0.1	<0.1
вн3	0-0.15	<0.1	<0.2	<0.2	<0.3	<0.2	<0.2	<0.6	<0.5	<0.1	<0.1
BH4	0-0.15	<0.1	<0.2	<0.2	<0.3	<0.2	<0.2	<0.6	<0.5	<0.1	<0.1

Table 20. Asbestos analytical results. Not Analysed (N.A.)

Asbesto	Asbestos HSL-A		ACM 0.01	AF/FA 0.001
Sample	Depth (m)	Yes/No	%w/w	%w/w
BH1	0-0.15	Yes	<0.01%	0.002
BH2	0-0.15	N.A.	N.A.	N.A.
ВН3	0-0.15	No	<0.01%	<0.001%
BH4	0-0.15	N.A.	N.A.	N.A.

ANALYTICAL REPORT

CLIENT DETAILS

LABORATORY DETAILS

Address

Contact Admin

Client NEO CONSULTING PTY LTD

Address PO BOX 279

RIVERSTONE NSW 2765

Manager Shane McDermott

Laboratory SGS Alexandria Environmental

Unit 16, 33 Maddox St Alexandria NSW 2015

 Telephone
 0416 680 375
 Telephone
 +61 2 8594 0400

 Facsimile
 (Not specified)
 Facsimile
 +61 2 8594 0499

admin@neoconsulting.com.au Email au.environmental.sydney@sgs.com

 Project
 N10057
 SGS Reference
 SE272464 R0

 Order Number
 N10057
 Date Received
 14/10/2024

 Samples
 4
 Date Reported
 21/10/2024

COMMENTS

Email

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique. Sample #1: Asbestos found in approx 5x3x2mm cement sheet fragment. Asbestos analysed by Approved Identifier Yusuf Kuthpudin

SIGNATORIES

Akheeqar BENIAMEEN

Chemist

Bennet LO

Senior Chemist

Dong LIANG

Metals/Inorganics Team Leader

Ly Kim HA

Organic Section Head

kmln

YUNGYING ZUBAG

Shane MCDERMOTT

Laboratory Manager

Teresa NGUYEN

Organic Chemist

Yusuf KUTHPUDIN

Asbestos Analyst

Ying Ying ZHANG

Laboratory Technician

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400

www.sgs.com.au

f +61 2 8594 0499

VOC's in Soil [AN433] Tested: 15/10/2024

			BH1	BH2	ВН3	BH4
			SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 14/10/2024 SE272464.001	- 14/10/2024 SE272464.002	- 14/10/2024 SE272464.003	- 14/10/2024 SE272464.004
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1

21/10/2024 Page 2 of 15

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 15/10/2024

			BH1	BH2	вн3	BH4
			SOIL	SOIL	SOIL	SOIL
						-
			14/10/2024	14/10/2024	14/10/2024	14/10/2024
PARAMETER	UOM	LOR	SE272464.001	SE272464.002	SE272464.003	SE272464.004
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

21/10/2024 Page 3 of 15

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 15/10/2024

			BH1	BH2	ВН3	BH4
			SOIL	SOIL	SOIL	SOIL
						-
			14/10/2024	14/10/2024	14/10/2024	14/10/2024
PARAMETER	UOM	LOR	SE272464.001	SE272464.002	SE272464.003	SE272464.004
TRH C10-C14	mg/kg	20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210

21/10/2024 Page 4 of 15

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 15/10/2024

			BH1	BH2	ВН3	BH4
			SOIL	SOIL	SOIL	SOIL
			-	-	- 30IL	- 30IL
			14/10/2024	14/10/2024	14/10/2024	14/10/2024
PARAMETER	UOM	LOR	SE272464.001	SE272464.002	SE272464.003	SE272464.004
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8

21/10/2024 Page 5 of 15

OC Pesticides in Soil [AN420] Tested: 15/10/2024

			BH1	BH2	ВН3	BH4
			SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 14/10/2024 SE272464.001	- 14/10/2024 SE272464.002	- 14/10/2024 SE272464.003	- 14/10/2024 SE272464.004
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1
Total OC VIC EPA	mg/kg	1	<1	<1	<1	<1

21/10/2024 Page 6 of 15

SGS

ANALYTICAL RESULTS

OP Pesticides in Soil [AN420] Tested: 15/10/2024

			BH1	BH2	ВН3	BH4
			SOIL -	SOIL -	SOIL -	SOIL -
			14/10/2024	14/10/2024	14/10/2024	14/10/2024
PARAMETER	UOM	LOR	SE272464.001	SE272464.002	SE272464.003	SE272464.004
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7

21/10/2024 Page 7 of 15

PCBs in Soil [AN420] Tested: 15/10/2024

			BH1	BH2	ВН3	BH4
			SOIL	SOIL	SOIL	SOIL
			-	-	-	-
			14/10/2024	14/10/2024	14/10/2024	14/10/2024
PARAMETER	UOM	LOR	SE272464.001	SE272464.002	SE272464.003	SE272464.004
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1

21/10/2024 Page 8 of 15

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 15/10/2024

			BH1	BH2	ВН3	BH4
			SOIL	SOIL	SOIL	SOIL
			- 14/10/2024	- 14/10/2024	- 14/10/2024	- 14/10/2024
PARAMETER	UOM	LOR	SE272464.001	SE272464.002	SE272464.003	SE272464.004
Arsenic, As	mg/kg	1	4	<1	4	2
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	19	5.2	22	19
Copper, Cu	mg/kg	0.5	13	1.5	6.5	3.3
Lead, Pb	mg/kg	1	97	1	13	8
Nickel, Ni	mg/kg	0.5	8.2	4.4	6.9	4.6
Zinc, Zn	mg/kg	2	160	11	62	7.3

21/10/2024 Page 9 of 15

SE272464 R0

Mercury in Soil [AN312] Tested: 15/10/2024

			BH1	BH2	BH3	BH4
			SOIL	SOIL	SOIL	SOIL
						-
			14/10/2024	14/10/2024	14/10/2024	14/10/2024
PARAMETER	UOM	LOR	SE272464.001	SE272464.002	SE272464.003	SE272464.004
Mercury	mg/kg	0.05	0.37	<0.05	<0.05	<0.05

21/10/2024 Page 10 of 15

SE272464 R0

Moisture Content [AN002] Tested: 15/10/2024

			BH1	BH2	BH3	BH4
			SOIL	SOIL	SOIL	SOIL
						-
			14/10/2024	14/10/2024	14/10/2024	14/10/2024
PARAMETER	UOM	LOR	SE272464.001	SE272464.002	SE272464.003	SE272464.004
% Moisture	%w/w	1	17.3	6.7	18.7	14.2

21/10/2024 Page 11 of 15

SE272464 R0

Fibre Identification in soil [AS4964/AN602] Tested: 15/10/2024

			BH1	ВН3
			SOIL	SOIL
PARAMETER	UOM	LOR	- 14/10/2024 SE272464.001	- 14/10/2024 SE272464.003
Date Analysed*	No unit	-	21/10/2024 00:00	21/10/2024 00:00
Asbestos Detected	No unit	-	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01

21/10/2024 Page 12 of 15

SE272464 R0

Gravimetric Determination of Asbestos in Soil [AN605] Tested: 15/10/2024

			BH1	BH3
			SOIL	SOIL
			14/10/2024	14/10/2024
PARAMETER	UOM	LOR	SE272464.001	SE272464.003
Date Analysed*	No unit	-	21/10/2024 00:00	21/10/2024 00:00
Total Sample Weight*	g	1	731	640
Bonded ACM in >7mm Sample*	g	0.001	<0.001	<0.001
AF/FA in >2mm to <7mm Sample*	g	0.00001	0.0163	<0.00001
AF/FA in <2mm Sample*	g	0.00001	<0.00001	<0.00001
Asbestos in soil (>7mm ACM)*	%w/w	0.01	<0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	0.002	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	0.002	<0.001
Fibre Type*	No unit	-	Chrysotile	NAD

21/10/2024 Page 13 of 15

METHOD SUMMARY

METHOD _

METHODOLOGY SUMMARY —

AN002

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.

AN040/AN320

A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.

AN040

A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by AAS or ICP as per USEPA Method 200.8.

AN312

Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500

AN403

Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.

AN403

Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.

AN403

The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.

AN420

(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

AN420

Total PAH calculated from individual analyte detections at or above the limit of reporting .

SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique

AN433

following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed

AN602/AS4964

Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic 'clues', which provide a reasonable degree of certainty, dispersion staining is a mandatory 'clue' for positive identification. If sufficient 'clues' are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.

AN602/AS4964

Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.

AN602/AS4964

AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

AN602/AS4964

The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-

(a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):

directly. References: USEPA 5030B, 8020A, 8260.

- (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg; and
- (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

21/10/2024 Page 14 of 15

METHOD SUMMARY

SE272464 R0

AN605	This technique gravimetrically determines the mass of Bonded Asbestos Containing Material retained on a 7mm Sieve and assumes that 15% of this ACM is asbestos. This calculated asbestos weight is then calculated as a percentage of the total sample weight. Any fibrous asbestos (FA) found in this fraction will be added to the 2-7mm fraction and its mass recorded there.
AN605	This technique also gravimetrically determines the mass of Fibrous Asbestos (FA) and Asbestos Fines (AF) Containing Material retained on and passing a 2mm sieve post 7mm sieving. Assumes that FA and AF are 100% asbestos containing. This calculated asbestos weight is then calculated as a percentage of the total sample weight. This does not include free/respirable fibres which are only observed by standard trace analysis as per AN602.
AN605	Bonded asbestos containing material (Bonded ACM) comprises asbestos-containing-material which is sound in condition. Fibrous asbestos (FA) comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. Asbestos fines (AF) includes free fibres, small fibre bundles and also small fragments of bonded ACM that passes through a 7mm sieve - which implies that the bonded ACM fragments have a substantial degree of damage which increases the potential for fibre release.
AN-605	Insofar as is technically feasible, this report is consistent with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment Remediation and Management of Asbestos - Contaminated Sites in Western Australia - May 2009 and NEPM 1999 (2013) schedule B1 section 4

FOOTNOTES

NATA accreditation does not cover Not analysed. UOM Unit of Measure. NVL the performance of this service. Not validated. LOR Limit of Reporting. Indicative data, theoretical holding IS Insufficient sample for analysis. Raised/lowered Limit of $\uparrow \downarrow$ time exceeded. INR Sample listed, but not received. Reporting. Indicates that both * and ** apply.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here; www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

21/10/2024 Page 15 of 15

STATEMENT OF QA/QC **PERFORMANCE**

LABORATORY DETAILS _

CLIENT DETAILS

Admin Shane McDermott Manager

NEO CONSULTING PTY LTD SGS Alexandria Environmental Client Laboratory

> PO BOX 279 Unit 16. 33 Maddox St Address **RIVERSTONE NSW 2765**

Alexandria NSW 2015

0416 680 375 +61 2 8594 0400 Telephone Telephone

(Not specified) +61 2 8594 0499 Facsimile Facsimile admin@neoconsulting.com.au au.environmental.sydney@sqs.com Email Email

N10057 SE272464 R0 Project SGS Reference

N10057 14 Oct 2024 Order Number Date Received 21 Oct 2024 Samples Date Reported

COMMENTS

Contact

Address

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document.

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Matrix Spike 2 items

> TRH (Total Recoverable Hydrocarbons) in Soil 2 items

SAMPLE SUMMARY

Sample counts by matrix 4 Soil Type of documentation received COC Date documentation received 14/10/2024 Samples received in good order Yes Samples received without headspace 6.8°C Sample temperature upon receipt Yes SGS Turnaround time requested Sample container provider Standard Samples received in correct containers Yes Sufficient sample for analysis Yes Sample cooling method Ice Bricks Samples clearly labelled Yes Complete documentation received

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd

Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

внз

BH4

SE272464.003

SE272464.004

LB326692

LB326692

14 Oct 2024

14 Oct 2024

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Fibre Identification in soil	0 1 1	222			<i>5.4 (i</i> 5	- · · ·		-[ENV]AS4964/AN6
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1	SE272464.001	LB326776	14 Oct 2024	14 Oct 2024	14 Oct 2025	15 Oct 2024	14 Oct 2025	21 Oct 2024
BH3	SE272464.003	LB326776	14 Oct 2024	14 Oct 2024	14 Oct 2025	15 Oct 2024	14 Oct 2025	21 Oct 2024
Bravimetric Determination	of Asbestos in Soil						Method:	ME-(AU)-[ENV]AN6
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1	SE272464.001	LB326776	14 Oct 2024	14 Oct 2024	12 Apr 2025	15 Oct 2024	12 Apr 2025	21 Oct 2024
ВН3	SE272464.003	LB326776	14 Oct 2024	14 Oct 2024	12 Apr 2025	15 Oct 2024	12 Apr 2025	21 Oct 2024
Mercury in Soil							Method:	ME-(AU)-[ENV]AN3
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1	SE272464.001	LB326716	14 Oct 2024	14 Oct 2024	11 Nov 2024	15 Oct 2024	11 Nov 2024	18 Oct 2024
BH2	SE272464.002	LB326716	14 Oct 2024	14 Oct 2024	11 Nov 2024	15 Oct 2024	11 Nov 2024	18 Oct 2024
BH3	SE272464.003	LB326716	14 Oct 2024	14 Oct 2024	11 Nov 2024	15 Oct 2024	11 Nov 2024	18 Oct 2024
BH4	SE272464.004	LB326716	14 Oct 2024	14 Oct 2024	11 Nov 2024	15 Oct 2024	11 Nov 2024	18 Oct 2024
Noisture Content							Method:	ME-(AU)-[ENV]ANG
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1	SE272464.001	LB326704	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	20 Oct 2024	17 Oct 2024
BH2	SE272464.002	LB326704	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	20 Oct 2024	17 Oct 2024
BH3	SE272464.003	LB326704	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	20 Oct 2024	17 Oct 2024
BH4	SE272464.004	LB326704	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	20 Oct 2024	17 Oct 2024
OC Pesticides in Soil							Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1	SE272464.001	LB326692	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	24 Nov 2024	17 Oct 2024
BH2	SE272464.002	LB326692	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	24 Nov 2024	17 Oct 2024
BH3	SE272464.003	LB326692	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	24 Nov 2024	17 Oct 2024
BH4	SE272464.004	LB326692	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	24 Nov 2024	17 Oct 2024
OP Pesticides in Soil								ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1	SE272464.001	LB326692	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	24 Nov 2024	21 Oct 2024
BH2	SE272464.002	LB326692	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	24 Nov 2024	21 Oct 2024
BH3	SE272464.003	LB326692	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	24 Nov 2024	21 Oct 2024
BH4	SE272464.004	LB326692	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	24 Nov 2024	21 Oct 2024
PAH (Polynuclear Aromati								ME-(AU)-[ENV]AN
	· ·	OC Pof	Campled	Dessived	Everantian Dua	Evivoeted		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1	SE272464.001	LB326692	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	24 Nov 2024	21 Oct 2024
BH2	SE272464.002	LB326692	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	24 Nov 2024	21 Oct 2024
BH3	SE272464.003	LB326692	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	24 Nov 2024	21 Oct 2024
BH4	SE272464.004	LB326692	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	24 Nov 2024	21 Oct 2024
CBs in Soil								ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1	SE272464.001	LB326692	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	24 Nov 2024	17 Oct 2024
BH2	SE272464.002	LB326692	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	24 Nov 2024	17 Oct 2024
BH3 BH4	SE272464.003 SE272464.004	LB326692 LB326692	14 Oct 2024 14 Oct 2024	14 Oct 2024 14 Oct 2024	28 Oct 2024 28 Oct 2024	15 Oct 2024 15 Oct 2024	24 Nov 2024 24 Nov 2024	17 Oct 2024 17 Oct 2024
	nts in Soil/Waste Solids/Ma		14 001 2024	14 001 2024	20 00(2024	10 001 2024		J)-[ENV]AN040/AN3
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1	SE272464.001	LB326710	14 Oct 2024	14 Oct 2024	12 Apr 2025	15 Oct 2024	12 Apr 2025	18 Oct 2024
BH2	SE272464.001	LB326710	14 Oct 2024	14 Oct 2024	12 Apr 2025	15 Oct 2024	12 Apr 2025	18 Oct 2024
	SE272464.002 SE272464.003							
BH3 BH4	SE272464.003 SE272464.004	LB326710 LB326710	14 Oct 2024 14 Oct 2024	14 Oct 2024 14 Oct 2024	12 Apr 2025 12 Apr 2025	15 Oct 2024 15 Oct 2024	12 Apr 2025 12 Apr 2025	18 Oct 2024 18 Oct 2024
RH (Total Recoverable H		25520710	551 2024	50(2024	121 pt 2020	.0 001 2024		ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Sample Name BH1	Sample No. SE272464.001	LB326692	•	14 Oct 2024	28 Oct 2024	15 Oct 2024	24 Nov 2024	
BH2	SE272464.001	LB326692	14 Oct 2024				24 Nov 2024 24 Nov 2024	18 Oct 2024 18 Oct 2024
טווב	3E212404.UU2	LD320092	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	24 INUV ZUZ4	10 OCI 2024

21/10/2024 Page 2 of 19

14 Oct 2024

14 Oct 2024

28 Oct 2024

28 Oct 2024

15 Oct 2024

15 Oct 2024

24 Nov 2024

24 Nov 2024

18 Oct 2024

18 Oct 2024

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

VOC's in Soil Method: ME-(AU)-[ENV]AN433

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1	SE272464.001	LB326698	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	28 Oct 2024	18 Oct 2024
BH2	SE272464.002	LB326698	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	28 Oct 2024	18 Oct 2024
BH3	SE272464.003	LB326698	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	28 Oct 2024	18 Oct 2024
BH4	SE272464.004	LB326698	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	28 Oct 2024	18 Oct 2024

Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1	SE272464.001	LB326698	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	28 Oct 2024	18 Oct 2024
BH2	SE272464.002	LB326698	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	28 Oct 2024	18 Oct 2024
ВН3	SE272464.003	LB326698	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	28 Oct 2024	18 Oct 2024
BH4	SE272464.004	LB326698	14 Oct 2024	14 Oct 2024	28 Oct 2024	15 Oct 2024	28 Oct 2024	18 Oct 2024

21/10/2024 Page 3 of 19

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil				Method: M	E-(AU)-[ENV]AN42
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH1	SE272464.001	%	60 - 130%	103
	BH2	SE272464.002	%	60 - 130%	94
	BH3	SE272464.003	%	60 - 130%	106
	BH4	SE272464.004	%	60 - 130%	99
OP Pesticides in Soil				Method: M	E-(AU)-[ENV]AN42
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH1	SE272464.001	%	60 - 130%	93
	BH2	SE272464.002	%	60 - 130%	101
	BH3	SE272464.003	%	60 - 130%	87
	BH4	SE272464.004	%	60 - 130%	88
d14-p-terphenyl (Surrogate)	BH1	SE272464.001	%	60 - 130%	97
	BH2	SE272464.002	%	60 - 130%	108
	BH3	SE272464.003	%	60 - 130%	95
	BH4	SE272464.004	%	60 - 130%	92
PAH (Polynuclear Aromatic Hydrocarbons) in Soil					E-(AU)-[ENV]AN42
	Cample Name	Sampla Number	Unito		
Parameter 2 fluorohiphopul (Surrogato)	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH1	SE272464.001 SE272464.002	% %	70 - 130%	93
	BH2 BH3	SE272464.002 SE272464.003	% %	70 - 130% 70 - 130%	101 87
d14 n ternhenul (Curregate)	BH4	SE272464.004	<u>%</u> %	70 - 130% 70 - 130%	88
d14-p-terphenyl (Surrogate)	BH1	SE272464.001			97
	BH2 BH3	SE272464.002	<u>%</u> %	70 - 130%	108 95
	BH4	SE272464.003	% %	70 - 130%	95
dE nitrohannana (Curranata)		SE272464.004	% %	70 - 130%	112
d5-nitrobenzene (Surrogate)	BH1	SE272464.001 SE272464.002	% %	70 - 130%	
	BH2 BH3	SE272464.002 SE272464.003	%	70 - 130% 70 - 130%	124 107
	BH4	SE272464.004	%	70 - 130%	107
	DI14	3E212404.004	/0		
PCBs in Soil					
				Method: M	E-(AU)-[ENV]AN42
Parameter	Sample Name	Sample Number	Units	Method: M Criteria	E-(AU)-[ENV]AN42 Recovery %
	Sample Name BH1	Sample Number SE272464.001	Units %	_	
Parameter	•	· · · · · · · · · · · · · · · · · · ·		Criteria	Recovery %
Parameter	BH1	SE272464.001	%	Criteria 60 - 130%	Recovery %
Parameter	BH1 BH2	SE272464.001 SE272464.002	%	Criteria 60 - 130% 60 - 130%	Recovery % 104 95
Parameter	BH1 BH2 BH3	SE272464.001 SE272464.002 SE272464.003	% % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recovery % 104 95 106 99
Parameter TCMX (Surrogate)	BH1 BH2 BH3	SE272464.001 SE272464.002 SE272464.003	% % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recovery % 104 95 106 99
Parameter TCMX (Surrogate) VOC's in Soil	BH1 BH2 BH3 BH4	SE272464.001 SE272464.002 SE272464.003 SE272464.004	% % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% Method: M	Recovery % 104 95 106 99 E-(AU)-[ENV]AN43
Parameter TCMX (Surrogate) VOC's in Soil Parameter	BH1 BH2 BH3 BH4 Sample Name	SE272464.001 SE272464.002 SE272464.003 SE272464.004	% % % % Units	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% Method: M	Recovery % 104 95 106 99 E-(AU)-[ENV]AN43 Recovery %
Parameter TCMX (Surrogate) VOC's in Soil Parameter	BH1 BH2 BH3 BH4 Sample Name	SE272464.001 SE272464.002 SE272464.003 SE272464.004 Sample Number SE272464.001	% % % % Units	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% Method: M Criteria 60 - 130%	Recovery % 104 95 106 99 E-(AU)-[ENV]AN43 Recovery % 91
Parameter TCMX (Surrogate) VOC's in Soil Parameter	BH1 BH2 BH3 BH4 Sample Name BH1 BH2	SE272464.001 SE272464.002 SE272464.003 SE272464.004 Sample Number SE272464.001 SE272464.002	% % % % Units %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% Method: M Criteria 60 - 130% 60 - 130%	Recovery % 104 95 106 99 E-(AU)-[ENV]AN43 Recovery % 91 100
Parameter TCMX (Surrogate) VOC's in Soil Parameter	BH1 BH2 BH3 BH4 Sample Name BH1 BH2 BH3	SE272464.001 SE272464.002 SE272464.003 SE272464.004 Sample Number SE272464.001 SE272464.002 SE272464.003	% % % W Units % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% Method: M Criteria 60 - 130% 60 - 130% 60 - 130%	Recovery % 104 95 106 99 E-(AU)-[ENV]AN43 Recovery % 91 100 101
Parameter TCMX (Surrogate) VOC's in Soll Parameter Bromofluorobenzene (Surrogate)	BH1 BH2 BH3 BH4 Sample Name BH1 BH2 BH3 BH4	SE272464.001 SE272464.002 SE272464.003 SE272464.004 Sample Number SE272464.001 SE272464.002 SE272464.003 SE272464.003	% % % W Units % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% Method: M Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recovery % 104 95 106 99 E-(AU)-[ENV]AN43 Recovery % 91 100 101 101
Parameter TCMX (Surrogate) VOC's in Soll Parameter Bromofluorobenzene (Surrogate)	BH1 BH2 BH3 BH4 Sample Name BH1 BH2 BH3 BH4 BH1	SE272464.001 SE272464.002 SE272464.003 SE272464.004 Sample Number SE272464.001 SE272464.002 SE272464.003 SE272464.004 SE272464.004	% % % ** ** ** ** ** ** ** **	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% Method: M Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recovery % 104 95 106 99 E-(AU)-[ENV]AN43 Recovery % 91 100 101 101 76
Parameter TCMX (Surrogate) VOC's in Soll Parameter Bromofluorobenzene (Surrogate)	BH1 BH2 BH3 BH4 Sample Name BH1 BH2 BH3 BH4 BH1 BH1 BH1	SE272464.001 SE272464.002 SE272464.003 SE272464.004 Sample Number SE272464.001 SE272464.002 SE272464.003 SE272464.004 SE272464.001 SE272464.001 SE272464.001	% % % Units % % % % % % % % % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% Method: M Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recovery % 104 95 106 99 E-(AU)-[ENV]AN43 Recovery % 91 100 101 101 76 78
Parameter TCMX (Surrogate) VOC's in Soll Parameter Bromofluorobenzene (Surrogate)	BH1 BH2 BH3 BH4 Sample Name BH1 BH2 BH3 BH4 BH1 BH2 BH3 BH4 BH1 BH2 BH3	SE272464.001 SE272464.002 SE272464.003 SE272464.004 Sample Number SE272464.001 SE272464.002 SE272464.003 SE272464.004 SE272464.001 SE272464.001 SE272464.001 SE272464.002 SE272464.002 SE272464.003	% % % Units % % % % % % % % % % % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% Method: M Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recovery % 104 95 106 99 E-(AU)-[ENV]AN43 Recovery % 91 100 101 101 76 78 85
Parameter TCMX (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	BH1 BH2 BH3 BH4 Sample Name BH1 BH2 BH3 BH4 BH1 BH2 BH1 BH2 BH3 BH4 BH1 BH2 BH3 BH4	SE272464.001 SE272464.002 SE272464.003 SE272464.004 Sample Number SE272464.001 SE272464.002 SE272464.003 SE272464.004 SE272464.001 SE272464.001 SE272464.002 SE272464.003 SE272464.003 SE272464.003 SE272464.003	% % % Units % % % % % % % % % % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% Method: M Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recovery % 104 95 106 99 E-(AU)-[ENV]AN43 Recovery % 91 100 101 101 76 78 85
Parameter TCMX (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	BH1 BH2 BH3 BH4 Sample Name BH1 BH2 BH3 BH4 BH1 BH2 BH3 BH4 BH1 BH2 BH3 BH4 BH1 BH2 BH3 BH4	SE272464.001 SE272464.002 SE272464.003 SE272464.004 Sample Number SE272464.001 SE272464.002 SE272464.003 SE272464.004 SE272464.001 SE272464.001 SE272464.002 SE272464.003 SE272464.004 SE272464.004 SE272464.004	% % % Units % % % % % % % % % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% Method: M Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recovery % 104 95 106 99 E-(AU)-[ENV]AN43 Recovery % 91 100 101 101 76 78 85 81 98
Parameter TCMX (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	BH1 BH2 BH3 BH4 Sample Name BH1 BH2 BH3 BH4 BH1 BH2 BH3 BH4 BH1 BH2 BH3 BH4 BH1 BH2 BH3 BH4 BH1 BH2	SE272464.001 SE272464.002 SE272464.003 SE272464.004 Sample Number SE272464.001 SE272464.002 SE272464.003 SE272464.004 SE272464.001 SE272464.002 SE272464.003 SE272464.000 SE272464.001 SE272464.001 SE272464.004 SE272464.001 SE272464.001	% % % Units % % % % % % % % % % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% Method: M Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recovery % 104 95 106 99 E-(AU)-[ENV]AN43 Recovery % 91 100 101 101 76 78 85 81 98 97
Parameter TCMX (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	BH1 BH2 BH3 BH4 Sample Name BH1 BH2 BH3 BH4 BH1 BH2 BH3 BH4 BH1 BH2 BH3 BH4 BH1 BH2 BH3 BH4 BH1 BH2 BH3	SE272464.001 SE272464.002 SE272464.003 SE272464.004 Sample Number SE272464.001 SE272464.003 SE272464.004 SE272464.004 SE272464.001 SE272464.002 SE272464.002 SE272464.001 SE272464.002 SE272464.001 SE272464.001 SE272464.002 SE272464.004 SE272464.001 SE272464.001 SE272464.001 SE272464.002 SE272464.002 SE272464.002	% % % Units % % % % % % % % % % % % % % % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% Method: M Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recovery % 104 95 106 99 E-(AU)-[ENV]AN43 Recovery % 91 100 101 76 78 85 81 98 97 109
Parameter TCMX (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	BH1 BH2 BH3 BH4 Sample Name BH1 BH2 BH3 BH4 BH1 BH2 BH3 BH4 BH1 BH2 BH3 BH4 BH1 BH2 BH3 BH4 BH1 BH2	SE272464.001 SE272464.002 SE272464.003 SE272464.004 Sample Number SE272464.001 SE272464.002 SE272464.003 SE272464.004 SE272464.001 SE272464.001 SE272464.002 SE272464.003 SE272464.004 SE272464.003 SE272464.004 SE272464.004 SE272464.004 SE272464.001 SE272464.001 SE272464.001 SE272464.002 SE272464.003 SE272464.003	% % % Units % % % % % % % % % % % % % % % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% Method: M Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recovery % 104 95 106 99 E-(AU)-[ENV]AN43 Recovery % 91 100 101 101 76 78 85 81 98 97 109 104 E-(AU)-[ENV]AN43
Parameter TCMX (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	BH1 BH2 BH3 BH4 Sample Name BH1 BH2 BH3 BH4 BH1 BH2 BH3 BH4 BH1 BH2 BH3 BH4 BH1 BH2 BH3 BH4 BH1 BH2 BH3	SE272464.001 SE272464.002 SE272464.003 SE272464.004 Sample Number SE272464.001 SE272464.003 SE272464.004 SE272464.004 SE272464.001 SE272464.002 SE272464.002 SE272464.001 SE272464.002 SE272464.001 SE272464.001 SE272464.002 SE272464.004 SE272464.001 SE272464.001 SE272464.001 SE272464.002 SE272464.002 SE272464.002	% % % Units % % % % % % % % % % % % % % % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% Method: M Criteria 60 - 130%	Recovery % 104 95 106 99 E-(AU)-[ENV]AN43 Recovery % 91 100 101 76 78 85 81 98 97 109
Parameter TCMX (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Volatile Petroleum Hydrocarbons in Soil Parameter	BH1 BH2 BH3 BH4 Sample Name BH1 BH2 BH3 BH4	SE272464.001 SE272464.002 SE272464.003 SE272464.004 Sample Number SE272464.001 SE272464.002 SE272464.003 SE272464.004 SE272464.001 SE272464.001 SE272464.002 SE272464.003 SE272464.001 SE272464.003 SE272464.004 SE272464.004 SE272464.004 SE272464.001 SE272464.001 SE272464.001 SE272464.002 SE272464.002 SE272464.003 SE272464.004 SAmple Number	% % % Units % % % % % % % % % % % % % % % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% Method: M Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% Criteria 60 - 130% Method: M Criteria 60 - 130%	Recovery % 104 95 106 99 E-(AU)-[ENV]AN43 Recovery % 91 100 101 101 76 78 85 81 98 97 109 104 E-(AU)-[ENV]AN43 Recovery % 91
Parameter TCMX (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Volatile Petroleum Hydrocarbons in Soil Parameter	BH1 BH2 BH3 BH4 Sample Name BH1 BH2 BH3 BH4	SE272464.001 SE272464.003 SE272464.003 SE272464.004 Sample Number SE272464.001 SE272464.003 SE272464.004 SE272464.001 SE272464.001 SE272464.002 SE272464.002 SE272464.002 SE272464.003 SE272464.001 SE272464.001 SE272464.001 SE272464.001 SE272464.001 SE272464.001 SE272464.001 SE272464.001 SE272464.001 SE272464.002 SE272464.003 SE272464.003 SE272464.004	% % % Units % % % % % % % % % % % Units % % % % % % % % % % % % % % % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% Method: M Criteria 60 - 130%	Recovery % 104 95 106 99 E-(AU)-[ENV]AN43 Recovery % 91 100 101 101 76 78 85 81 98 97 109 104 E-(AU)-[ENV]AN43 Recovery % 91 100
Parameter TCMX (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Volatile Petroleum Hydrocarbons in Soil Parameter	BH1 BH2 BH3 BH4 Sample Name BH1 BH2 BH3 BH4	SE272464.001 SE272464.002 SE272464.003 SE272464.004 Sample Number SE272464.001 SE272464.003 SE272464.003 SE272464.004 SE272464.001 SE272464.001 SE272464.001 SE272464.003 SE272464.003 SE272464.001 SE272464.004 SE272464.001 SE272464.001 SE272464.001 SE272464.001 SE272464.001 SE272464.001 SE272464.001 SE272464.003 SE272464.003 SE272464.004	% % % % Units % % % % % % % % % Units % % % % % % % % % % % % % % % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% Method: M Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recovery % 104 95 106 99 E-(AU)-[ENV]AN43 Recovery % 91 100 101 76 78 85 81 98 97 109 104 E-(AU)-[ENV]AN43 Recovery % 91 100 101
Parameter TCMX (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate)	BH1 BH2 BH3 BH4 Sample Name BH1 BH2 BH3 BH4	SE272464.001 SE272464.002 SE272464.003 SE272464.004 Sample Number SE272464.001 SE272464.002 SE272464.003 SE272464.001 SE272464.001 SE272464.001 SE272464.001 SE272464.003 SE272464.003 SE272464.004 SE272464.004 SE272464.004 SE272464.001 SE272464.001 SE272464.001 SE272464.001 SE272464.001 SE272464.001 SE272464.002 SE272464.003 SE272464.004	% % % Wnits % % % % % % % % % % % % % % % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% Method: M Criteria 60 - 130%	Recovery % 104 95 106 99 E-(AU)-[ENV]AN43 Recovery % 91 100 101 101 76 78 85 81 98 97 109 104 E-(AU)-[ENV]AN43 Recovery % 91 100 101 101 101
Parameter TCMX (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Volatile Petroleum Hydrocarbons in Soil Parameter	BH1 BH2 BH3 BH4 Sample Name BH1 BH2 BH3 BH4	SE272464.001 SE272464.002 SE272464.003 SE272464.004 Sample Number SE272464.001 SE272464.002 SE272464.003 SE272464.004 SE272464.001 SE272464.002 SE272464.003 SE272464.004 SE272464.004 SE272464.004 SE272464.005 SE272464.001 SE272464.001 SE272464.001 SE272464.002 SE272464.003 SE272464.004 SE272464.003 SE272464.004 SE272464.004 SE272464.001 SE272464.001 SE272464.001 SE272464.002 SE272464.003 SE272464.004 SE272464.004 SE272464.004	% % % % Wnits % % % % % % % % % % % % % % % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% Method: M Criteria 60 - 130%	Recovery % 104 95 106 99 E-(AU)-[ENV]AN43 Recovery % 91 100 101 101 76 78 85 81 98 97 109 104 E-(AU)-[ENV]AN43 Recovery % 91 100 101 101 101 76
Parameter TCMX (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate)	BH1 BH2 BH3 BH4 Sample Name BH1 BH2 BH3 BH4	SE272464.001 SE272464.002 SE272464.003 SE272464.004 Sample Number SE272464.001 SE272464.002 SE272464.003 SE272464.004 SE272464.001 SE272464.002 SE272464.002 SE272464.001 SE272464.003 SE272464.004 SE272464.001 SE272464.001 SE272464.001 SE272464.002 SE272464.001 SE272464.003 SE272464.001 SE272464.003 SE272464.004 SE272464.001 SE272464.001 SE272464.001 SE272464.001 SE272464.002 SE272464.003 SE272464.001 SE272464.003 SE272464.001 SE272464.001 SE272464.001 SE272464.001	% % % % % % % % % % % % % % % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% Method: M Criteria 60 - 130%	104 95 106 99 E-(AU)-[ENV]AN43: Recovery % 91 100 101 101 76 78 85 81 98 97 109 104 E-(AU)-[ENV]AN43: Recovery % 91 100 101 101 76 78
Parameter TCMX (Surrogate) VOC's in Soil Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Volatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate)	BH1 BH2 BH3 BH4 Sample Name BH1 BH2 BH3 BH4	SE272464.001 SE272464.002 SE272464.003 SE272464.004 Sample Number SE272464.001 SE272464.002 SE272464.003 SE272464.004 SE272464.001 SE272464.002 SE272464.003 SE272464.004 SE272464.004 SE272464.004 SE272464.005 SE272464.001 SE272464.001 SE272464.001 SE272464.002 SE272464.003 SE272464.004 SE272464.003 SE272464.004 SE272464.004 SE272464.001 SE272464.001 SE272464.001 SE272464.002 SE272464.003 SE272464.004 SE272464.004 SE272464.004	% % % % Wnits % % % % % % % % % % % % % % % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% Method: M Criteria 60 - 130%	Recovery % 104 95 106 99 E-(AU)-[ENV]AN43: Recovery % 91 100 101 76 78 85 81 98 97 109 104 E-(AU)-[ENV]AN43: Recovery % 91 100 101 101 76

21/10/2024 Page 4 of 19

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d8-toluene (Surrogate)	BH1	SE272464.001	%	60 - 130%	98
	BH2	SE272464.002	%	60 - 130%	97
	BH3	SE272464.003	%	60 - 130%	109
	BH4	SE272464.004	%	60 - 130%	104

21/10/2024 Page 5 of 19

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Sample Number	Parameter	Units	LOR	Result
LB326716.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result
LB326692.001	Alpha BHC	mg/kg	0.1	<0.1
	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Lindane (gamma BHC)	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	Endrin aldehyde	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endrin ketone	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	97

OP Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result
LB326692.001	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Ethion	mg/kg	0.2	<0.2
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
Surrogates	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	2-fluorobiphenyl (Surrogate)	%	-	97
	d14-p-terphenyl (Surrogate)	%	-	99

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result
LB326692.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1
	Fluoranthene	mg/kg	0.1	<0.1
	Pyrene	mg/kg	0.1	<0.1
	Benzo(a)anthracene	mg/kg	0.1	<0.1
	Chrysene	mg/kg	0.1	<0.1
	Benzo(a)pyrene	mg/kg	0.1	<0.1

21/10/2024 Page 6 of 19

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Sample Number		Parameter	Units	LOR	Result
LB326692.001		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
Surrogates	Surrogates	d5-nitrobenzene (Surrogate)	%	-	95
		2-fluorobiphenyl (Surrogate)	%	-	97
		d14-p-terphenyl (Surrogate)	%	-	99

PCBs in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number		Parameter	Units	LOR	Result
LB326692.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
Sui	rrogates	TCMX (Surrogate)	%	=	98

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result
LB326710.001	Arsenic, As	mg/kg	1	<1
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.5	<0.5
	Copper, Cu	mg/kg	0.5	<0.5
	Nickel, Ni	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Zinc, Zn	mg/kg	2	<2.0

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

Sample Number	Parameter	Units	LOR	Result
LB326692.001	TRH C10-C14	mg/kg	20	<20
	TRH C15-C28	mg/kg	45	<45
	TRH C29-C36	mg/kg	45	<45
	TRH C37-C40	mg/kg	100	<100
	TRH C10-C36 Total	mg/kg	110	<110

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB326698.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene (VOC)*	mg/kg	0.1	<0.1
Surrogates	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	98
	d8-toluene (Surrogate)	%	-	106	
		Bromofluorobenzene (Surrogate)	%	-	104
	Totals	Total BTEX*	mg/kg	0.6	<0.6

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB326698.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	98

21/10/2024 Page 7 of 19

Units LOR Original Duplicate Criteria % RPD %

Original Duplicate

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Mercury in Soil Method: ME-(AU)-[ENV]AN312

Original	Duplicate	Parameter	Units LOF	R Origina	I Duplicate	Criteria %	RPD %
SE272451.001	LB326716.014	Mercury	mg/kg 0.05	0.03291338	190.0324390534	183	0
SE272459.003	LB326716.024	Mercury	mg/kg 0.05		390.0019856972		0

Moisture Content Method: ME-(AU)-[ENV]AN002

Original	Duplicate	Parameter	Units	LOR	Original [Duplicate	Criteria %	RPD %
SE272451.001	LB326704.011	% Moisture	%w/w	1	14.01673640164.			4
SE272459.003	LB326704.021	% Moisture	%w/w	1	11.86974789912.	.3370110330	38	4

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN420

ліушаі	Duplicate		Farameter	UIIIIS	LUK				KFD //
E272451.001	LB326692.014		Alpha BHC	mg/kg	0.1	0	0	200	0
			Hexachlorobenzene (HCB)	mg/kg	0.1	0	0	200	0
			Beta BHC	mg/kg	0.1	0	0	200	0
			Lindane (gamma BHC)	mg/kg	0.1	0	0	200	0
			Delta BHC	mg/kg	0.1	0	0	200	0
			Heptachlor	mg/kg	0.1	0	0	200	0
			Aldrin	mg/kg	0.1	0	0	200	0
			Isodrin	mg/kg	0.1	0	0	200	0
			Heptachlor epoxide	mg/kg	0.1	0	0	200	0
			Gamma Chlordane	mg/kg	0.1	0	0	200	0
			Alpha Chlordane	mg/kg	0.1	0	0	200	0
			Alpha Endosulfan	mg/kg	0.2	0	0	200	0
			o,p'-DDE*	mg/kg	0.1	0	0	200	0
			p,p'-DDE	mg/kg	0.1	0	0	200	0
			Dieldrin	mg/kg	0.2	0	0	200	0
			Endrin	mg/kg	0.2	0	0	200	0
			Beta Endosulfan	mg/kg	0.2	0	0	200	0
			o,p'-DDD*	mg/kg	0.1	0	0	200	0
			p,p'-DDD	mg/kg	0.1	0	0	200	0
			Endrin aldehyde	mg/kg	0.1	0	0	200	0
			Endosulfan sulphate	mg/kg	0.1	0	0	200	0
			o,p'-DDT*	mg/kg	0.1	0	0	200	0
			p,p'-DDT	mg/kg	0.1	0	0	200	0
			Endrin ketone	mg/kg	0.1	0	0	200	0
			Methoxychlor	mg/kg	0.1	0	0	200	0
			Mirex	mg/kg	0.1	0	0	200	0
			trans-Nonachlor	mg/kg	0.1	0	0	200	0
			Total CLP OC Pesticides	mg/kg	1	0	0	200	0
			Total OC VIC EPA	mg/kg	1	0	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.1762081222	0.1597339262	30	10
E272459.003	LB326692.024		Alpha BHC	mg/kg	0.1	0	0	200	0
			Hexachlorobenzene (HCB)	mg/kg	0.1	0	0	200	0
			Beta BHC	mg/kg	0.1	0	0	200	0
			Lindane (gamma BHC)	mg/kg	0.1	0	0	200	0
			Delta BHC	mg/kg	0.1	0	0	200	0
			Heptachlor	mg/kg	0.1	0	0	200	0
			Aldrin	mg/kg	0.1	0	0	200	0
			Isodrin	mg/kg	0.1	0	0	200	0
			Heptachlor epoxide	mg/kg	0.1	0	0	200	0
			Gamma Chlordane	mg/kg	0.1	0	0	200	0
			Alpha Chlordane	mg/kg	0.1	0	0	200	0
			Alpha Endosulfan	mg/kg	0.2	0	0	200	0
			o,p'-DDE*	mg/kg	0.1	0	0	200	0
			p,p'-DDE	mg/kg	0.1	0	0	200	0
			Dieldrin	mg/kg	0.2	0	0	200	0
			Endrin	mg/kg	0.2	0	0	200	0
			Beta Endosulfan	mg/kg	0.2	0	0	200	0
			o,p'-DDD*	mg/kg	0.1	0	0	200	0
			p,p'-DDD	mg/kg	0.1	0	0	200	0

21/10/2024 Page 8 of 19

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

OC Pesticides in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272459.003	LB326692.024		Endrin aldehyde	mg/kg	0.1	0	0	200	0
			Endosulfan sulphate	mg/kg	0.1	0	0	200	0
			o,p'-DDT*	mg/kg	0.1	0	0	200	0
			p,p'-DDT	mg/kg	0.1	0	0	200	0
			Endrin ketone	mg/kg	0.1	0	0	200	0
			Methoxychlor	mg/kg	0.1	0	0	200	0
			Mirex	mg/kg	0.1	0	0	200	0
			trans-Nonachlor	mg/kg	0.1	0	0	200	0
			Total CLP OC Pesticides	mg/kg	1	0	0	200	0
			Total OC VIC EPA	mg/kg	1	0	0	200	0
	5	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.1771791388	30.1864248220	30	5

OP Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272451.001	LB326692.014		Azinphos-methyl (Guthion)	mg/kg	0.2	0.0026303851	0.0114985897	200	0
			Bromophos Ethyl	mg/kg	0.2	0.0007680113	38510.0114985897 01130.0003791363 69200.0063096635 0 0 0 59000.0085377311 0.0048657200 26480.0010553472 10510.0003567070 0 0 22190.4723567711 00340.4979961429 88130.0024371208 0 43040.0027257880 44513 0	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	0.0017676920	0.0063096635	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	0	0	200	0
			Dichlorvos	mg/kg	0.5	0	0	200	0
			Dimethoate	mg/kg	0.5	0	0	200	0
			Ethion	mg/kg	0.2	0.0063625900	0.0085377311	200	0
			Fenitrothion	mg/kg	0.2	0	0.0048657200	200	0
			Malathion	mg/kg	0.2	0.0115842648	0.0010553472	200	0
			Methidathion	mg/kg	0.5	0.0007351051	0.0003567070	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	0	0	200	0
			Total OP Pesticides*	mg/kg	1.7	0	0	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.47620422190.4723567711		30	1
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5128780034	0.4979961429	30	3
SE272459.003	LB326692.024		Azinphos-methyl (Guthion)	mg/kg	0.2	0.0028468813	0.0024371208	200	0
			Bromophos Ethyl	mg/kg	0.2	0	0	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	0.0021894304	0.0027257880	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	0.0072064513	0	200	0
			Dichlorvos	mg/kg	0.5	0	0	200	0
			Dimethoate	mg/kg	0.5	0.0006428395	0	200	0
			Ethion	mg/kg	0.2	0	0	200	0
			Fenitrothion	mg/kg	0.2	0.0034975741	0.0025800635	200	0
			Malathion	mg/kg	0.2	0.0130494447	0.0126814473	200	0
			Methidathion	mg/kg	0.5	0	0.0009420481	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	0	0	200	0
			Total OP Pesticides*	mg/kg	1.7	0	0	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4769179362	0.4545640326	30	5
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5159527222	0.4979586846	30	4

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272451.001	LB326692.014	Naphthalene	mg/kg	0.1	0.00751247200	.0049222058	200	0
		2-methylnaphthalene	mg/kg	0.1	0.02453920210	.0137811564	200	0
		1-methylnaphthalene	mg/kg	0.1	0.02310116310	.0161801561	200	0
		Acenaphthylene	mg/kg	0.1	0.00366145090	.0050559319	200	0
		Acenaphthene	mg/kg	0.1	0 0	.0006920381	200	0
		Fluorene	mg/kg	0.1	0.00177588360	.0053613643	200	0
		Phenanthrene	mg/kg	0.1	0.03237068940	.0377626170	200	0
		Anthracene	mg/kg	0.1	0.00689071860	.0080196711	200	0
		Fluoranthene	mg/kg	0.1	0.02315753920	.0317624433	200	0
		Pyrene	mg/kg	0.1	0.02633024780	.0382046542	200	0
		Benzo(a)anthracene	mg/kg	0.1	0.01280779250	.0183423799	200	0
		Chrysene	mg/kg	0.1	0.03958977100	.0286542720	200	0
		Benzo(b&j)fluoranthene	mg/kg	0.1	0.02352544740	.0343923171	200	0
		Benzo(k)fluoranthene	mg/kg	0.1	0.01044062840	.0135851111	200	0
		Benzo(a)pyrene	mg/kg	0.1	0.01559261710	.0229759850	200	0
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.01244701890	.0185536286	200	0
		Dibenzo(ah)anthracene	mg/kg	0.1	0 0	.0025253033	200	0

21/10/2024 Page 9 of 19

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272451.001	LB326692.014		Benzo(ghi)perylene	mg/kg	0.1	0.021465137	0.0349507693	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.2</td><td>0</td><td>0</td><td>200</td><td>0</td></lor=0*<>	mg/kg	0.2	0	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td>0.121</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	0.121	0.121	175	0
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td>0.242</td><td>0.242</td><td>134</td><td>0</td></lor=lor*<>	mg/kg	0.3	0.242	0.242	134	0
			Total PAH (18)	mg/kg	0.8	0	0	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.557582088	20.5672726512	30	2
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4762042219	0.4723567711	30	1
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5128780034	10.4979961429	30	3
SE272459.003	LB326692.024		Naphthalene	mg/kg	0.1	0.000163890	32.6533828362	200	0
			2-methylnaphthalene	mg/kg	0.1	0	0	200	0
			1-methylnaphthalene	mg/kg	0.1	0.000599836	30.0005562228	200	0
			Acenaphthylene	mg/kg	0.1	0	0	200	0
			Acenaphthene	mg/kg	0.1	0	0.0002101869	200	0
			Fluorene	mg/kg	0.1	0.000241606	10.0001995401	200	0
			Phenanthrene	mg/kg	0.1	0.000762304	50.0008839360	200	0
			Anthracene	mg/kg	0.1	0.0007463488	30.0005782829	200	0
			Fluoranthene	mg/kg	0.1	0.0001165018	30.0002167638	200	0
			Pyrene	mg/kg	0.1	0	0.0002324310	200	0
			Benzo(a)anthracene	mg/kg	0.1	0.004788643	0.0043801027	200	0
			Chrysene	mg/kg	0.1	0.005020964	0.0046245848	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.0002823728	3 0	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	0.0002018304	1 0	200	0
			Benzo(a)pyrene	mg/kg	0.1	0	0	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	5.250266984	26.3281705075	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	1.0517389250	0 0	200	0
			Benzo(ghi)perylene	mg/kg	0.1	4.982196530	10.0003226190	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.2</td><td>0</td><td>0</td><td>200</td><td>0</td></lor=0*<>	mg/kg	0.2	0	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td>0.121</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	0.121	0.121	175	0
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td>0.242</td><td>0.242</td><td>134</td><td>0</td></lor=lor*<>	mg/kg	0.3	0.242	0.242	134	0
			Total PAH (18)	mg/kg	0.8	0	0	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.585767063	70.5789523411	30	1
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.476917936	20.4545640326	30	5
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.515952722	20.4979586846	30	4

PCBs in Soil

Method: ME-(AU)-[ENV]AN420

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272451.001	LB326692.014		Arochlor 1016	mg/kg	0.2	0	0	200	0
			Arochlor 1221	mg/kg	0.2	0	0	200	0
			Arochlor 1232	mg/kg	0.2	0	0	200	0
			Arochlor 1242	mg/kg	0.2	0	0	200	0
			Arochlor 1248	mg/kg	0.2	0	0	200	0
			Arochlor 1254	mg/kg	0.2	0	0	200	0
			Arochlor 1260	mg/kg	0.2	0	0	200	0
			Arochlor 1262	mg/kg	0.2	0	0	200	0
			Arochlor 1268	mg/kg	0.2	0	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	0	0	200	0
		Surrogates	TCMX (Surrogate)	mg/kg	-	0.1724369747	70.1557196468	30	10
SE272459.003	LB326692.024		Arochlor 1016	mg/kg	0.2	0	0	200	0
			Arochlor 1221	mg/kg	0.2	0	0	200	0
			Arochlor 1232	mg/kg	0.2	0	0	200	0
			Arochlor 1242	mg/kg	0.2	0	0	200	0
			Arochlor 1248	mg/kg	0.2	0	0	200	0
			Arochlor 1254	mg/kg	0.2	0	0	200	0
			Arochlor 1260	mg/kg	0.2	0	0	200	0
			Arochlor 1262	mg/kg	0.2	0	0	200	0
			Arochlor 1268	mg/kg	0.2	0	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	0	0	200	0
		Surrogates	TCMX (Surrogate)	mg/kg	-	0.1733287643	30.1826845973	30	5

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Original Duplicate Parameter Units LOR

Method: ME-(AU)-[ENV]AN040/AN320

21/10/2024 Page 10 of 19

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272451.001	LB326710.014	Arsenic, As	mg/kg	1	4.8818116549	5.02416	50	3
		Cadmium, Cd	mg/kg	0.3	0.06482390010	.0338786956	200	0
		Chromium, Cr	mg/kg	0.5	8.59297993698	.1152117391	36	6
		Copper, Cu	mg/kg	0.5	25.15691635750	0.2766521739	32	21
		Nickel, Ni	mg/kg	0.5	11.97478560882	2.216556521	34	2
		Lead, Pb	mg/kg	1	15.7941526065	5.654991304	36	1
		Zinc, Zn	mg/kg	2	77.4025966255	1.992956521	33	22
SE272459.003	LB326710.024	Arsenic, As	mg/kg	1	6.02938213696	.0171388211	47	0
		Cadmium, Cd	mg/kg	0.3	-0.01418355180	.0073801626	200	0
		Chromium, Cr	mg/kg	0.5	14.50702833634	1.0453719512	34	3
		Copper, Cu	mg/kg	0.5	12.1136683455	5.652863617	34	25
		Nickel, Ni	mg/kg	0.5	3.44934830253	.3275308130	45	4
		Lead, Pb	mg/kg	1	14.12086969892	2.0873225609	38	16
		Zinc, Zn	mg/kg	2	16.41128455538	3.274205121	42	11

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272451.001	LB326692.014		TRH C10-C14	mg/kg	20	2.934000372	3.5171976832	200	0
			TRH C15-C28	mg/kg	45	20.999606654	31.4496317389	139	31
			TRH C29-C36	mg/kg	45	12.530620897	203.671766027	92	79
			TRH C37-C40	mg/kg	100	13.852624934	39.5583411649	200	0
			TRH C10-C36 Total	mg/kg	110	0	65.121397766	163	40
			TRH >C10-C40 Total (F bands)	mg/kg	210	0	36.612281333	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	3.0713557234	3.7986635670	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	0	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	52.796244609	136.612281333	125	41
			TRH >C34-C40 (F4)	mg/kg	120	24.163283187	67.3536601164	200	0
SE272459.003	LB326692.024		TRH C10-C14	mg/kg	20	1.6292900583	1.8038568503	200	0
			TRH C15-C28	mg/kg	45	3.2115813650	3.4264328013	200	0
			TRH C29-C36	mg/kg	45	9.2945626544	8.0725951106	200	0
			TRH C37-C40	mg/kg	100	0.4476071588	0.3446575123	200	0
			TRH C10-C36 Total	mg/kg	110	0	0	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	0	0	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	1.6964311322	1.9359009622	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	0	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	11.205845222	80.4001523368	200	0
			TRH >C34-C40 (F4)	mg/kg	120	1.6785268458	1.3002987965	200	0


VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272451.001	LB326698.014	Monocyclic	Benzene	mg/kg	0.1	0	0	200	0
		Aromatic	Toluene	mg/kg	0.1	0.0111371704	0.0097724855	200	0
			Ethylbenzene	mg/kg	0.1	0.0031699899	0.0006784129	200	0
			m/p-xylene	mg/kg	0.2	0.0041330846	0.0033629389	200	0
			o-xylene	mg/kg	0.1	0.0036370356	0.0010382807	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	0.0114784523	0.0030929356	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	6.8660562710	6.6652031777	50	3
			d8-toluene (Surrogate)	mg/kg	-	10.749010531	9.7387174470	50	10
			Bromofluorobenzene (Surrogate)	mg/kg	-	11.099750541	9.7126949438	50	13
		Totals	Total BTEX*	mg/kg	0.6	0	0	200	0
			Total Xylenes*	mg/kg	0.3	0.0077701202	0.0044012197	200	0
SE272459.003	LB326698.024	Monocyclic	Benzene	mg/kg	0.1	0	0	200	0
		Aromatic	Toluene	mg/kg	0.1	0.0082604942	0.0081278739	200	0
			Ethylbenzene	mg/kg	0.1	0.0002865441	0.0002296559	200	0
			m/p-xylene	mg/kg	0.2	0.0007624367	0.0007885005	200	0
			o-xylene	mg/kg	0.1	0.0003043407	0.0002713773	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	0	0	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.9181971202	8.1162776484	50	2
			d8-toluene (Surrogate)	mg/kg	-	9.1080004034	9.6698740216	50	6
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.6445630400	9.3254150885	50	8
		Totals	Total BTEX*	mg/kg	0.6	0	0	200	0
			Total Xylenes*	mg/kg	0.3	0.0010667774	0.0010598779	200	0

21/10/2024 Page 11 of 19

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Volaule Feu Oleuli	ii riyarooarbons iii oo	"					Woul	ou. IVIE-(AU)-	(miss bridge
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272451.001	LB326698.014		TRH C6-C10	mg/kg	25	2.1419113067	1.0326807091	200	0
			TRH C6-C9	mg/kg	20	1.0737122714	0.3117822377	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	6.8660562710	6.6652031777	50	3
			d8-toluene (Surrogate)	mg/kg	-	10.749010531	9.7387174470	50	10
			Bromofluorobenzene (Surrogate)	mg/kg	-	11.099750541	9.7126949438	50	13
		VPH F Bands	Benzene (F0)	mg/kg	0.1	0	0	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	2.1419113067	1.0326807091	200	0
SE272459.003	LB326698.024		TRH C6-C10	mg/kg	25	0.7258751002	0.7951156788	200	0
			TRH C6-C9	mg/kg	20	0.0783684785	0.1506245548	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.9181971202	8.1162776484	50	2
			d8-toluene (Surrogate)	mg/kg	-	9.1080004034	9.6698740216	50	6
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.6445630400	9.3254150885	50	8
		VPH F Bands	Benzene (F0)	mg/kg	0.1	0	0	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	0.7258751002	0.7951156788	200	0

21/10/2024 Page 12 of 19

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil						N	Method: ME-(AU)-[ENV]AN31	2
O I - Ni I	D		11-14-	LOD	December	From a set and	Ouit-ui- 0/ D0	4

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB326716.002	Mercury	mg/kg	0.05	0.18	0.2	80 - 120	92

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter			Units	LOR	Result	Expected	Criteria %	Recovery %
LB326692.002	Delta BHC			mg/kg	0.1	0.2	0.2	60 - 140	79
	Heptachlor			mg/kg	0.1	0.2	0.2	60 - 140	77
	Aldrin			mg/kg	0.1	0.2	0.2	60 - 140	77
	Dieldrin			mg/kg	0.2	<0.2	0.2	60 - 140	68
	Endrin			mg/kg	0.2	<0.2	0.2	60 - 140	81
	p,p'-DDT		1	mg/kg	0.1	0.1	0.2	60 - 140	69
Surrog	ates Tetrachloro-m-x	ylene (TCMX) (Surrogate)		mg/kg	-	0.14	0.15	40 - 130	92

OP Pesticides in Soil Method: ME-(AU)-[ENV]AN420

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB326692.002		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.8	2	60 - 140	88
		Diazinon (Dimpylate)	mg/kg	0.5	1.8	2	60 - 140	91
		Dichlorvos	mg/kg	0.5	1.3	2	60 - 140	67
		Ethion	mg/kg	0.2	1.8	2	60 - 140	91
Surrog	gates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	70 - 130	91
		d14-n-temberyl (Surrogate)	ma/ka	_	0.5	0.5	70 - 130	96

PAH (Polynuclear Aromatic Hydrocarbons) in Soil							N	Nethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB326692.002		Naphthalene		mg/kg	0.1	3.8	4	60 - 140	94
		Acenaphthylene		mg/kg	0.1	4.0	4	60 - 140	100
		Acenaphthene		mg/kg	0.1	3.9	4	60 - 140	97
		Phenanthrene		mg/kg	0.1	4.3	4	60 - 140	108
		Anthracene		mg/kg	0.1	4.4	4	60 - 140	109
		Fluoranthene		mg/kg	0.1	4.1	4	60 - 140	102
		Pyrene		mg/kg	0.1	4.4	4	60 - 140	110
		Benzo(a)pyrene		mg/kg	0.1	4.8	4	60 - 140	121
Surroga	ates	d5-nitrobenzene (Surrogate)		mg/kg		0.4	0.5	70 - 130	88
		2-fluorobiphenyl (Surrogate)		mg/kg		0.5	0.5	70 - 130	91
		d14-p-terphenyl (Surrogate)		mg/kg	-	0.5	0.5	70 - 130	96

PCBs in Soil

PCBs in Soil	PCBs in Soil						NU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB326692.002	Arochlor 1260	mg/kg	0.2	0.4	0.4	60 - 140	97

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

NAMES OF THE PARTY OF THE PARTY

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB326710.002	Arsenic, As	mg/kg	1	330	318.22	80 - 120	104
	Cadmium, Cd	mg/kg	0.3	4.5	4.81	70 - 130	93
	Chromium, Cr	mg/kg	0.5	37	38.31	80 - 120	98
	Copper, Cu	mg/kg	0.5	310	290	80 - 120	106
	Nickel, Ni	mg/kg	0.5	190	187	80 - 120	102
	Lead, Pb	mg/kg	1	94	89.9	80 - 120	104
	Zinc, Zn	mg/kg	2	280	273	80 - 120	104

TRH (Total Recoverable Hydrocarbons) in Soil

TRH (Total Recover	RH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403								
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %	
LB326692.002		TRH C10-C14	mg/kg	20	47	40	60 - 140	116	
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	104	
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	91	
	TRH F Bands	TRH >C10-C16	mg/kg	25	45	40	60 - 140	113	
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	97	
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	95	

VOC's in Soil

Sample Number	Parameter	Units	LOR

Method: ME-(AU)-[ENV]AN433

21/10/2024 Page 13 of 19

LABORATORY CONTROL SAMPLES

SE272464 R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB326698.002	Monocyclic	Benzene	mg/kg	0.1	4.8	5	60 - 140	96
	Aromatic	Toluene	mg/kg	0.1	5.7	5	60 - 140	113
		Ethylbenzene	mg/kg	0.1	4.8	5	60 - 140	96
		m/p-xylene	mg/kg	0.2	9.8	10	60 - 140	98
		o-xylene	mg/kg	0.1	5.1	5	60 - 140	103

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB326698.002		TRH C6-C10	mg/kg	25	69	92.5	60 - 140	75
		TRH C6-C9	mg/kg	20	54	80	60 - 140	67
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	39	62.5	60 - 140	62

21/10/2024 Page 14 of 19

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil Method: ME-(AU)-[ENV]AN312

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE272442.020	LB326716.004	Mercury	mg/kg	0.05	0.22	0.02017550817	0.2	98

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN420

OC Pesticides in	5011						Metric	od: ME-(AU)-[ENV]AN420
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE272442.020	LB326692.004		Alpha BHC	mg/kg	0.1	<0.1	0	-	-
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	-	-
			Beta BHC	mg/kg	0.1	<0.1	0	-	-
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	0	-	-
			Delta BHC	mg/kg	0.1	0.2	0	0.2	96
			Heptachlor	mg/kg	0.1	0.2	0	0.2	96
			Aldrin	mg/kg	0.1	0.2	0	0.2	94
			Isodrin	mg/kg	0.1	<0.1	0	-	-
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	0	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	0	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	-	-
			o,p'-DDE*	mg/kg	0.1	<0.1	0	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	0	-	-
			Dieldrin	mg/kg	0.2	<0.2	0	0.2	89
			Endrin	mg/kg	0.2	<0.2	0	0.2	85
			Beta Endosulfan	mg/kg	0.2	<0.2	0	-	-
			o,p'-DDD*	mg/kg	0.1	<0.1	0	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	0	-	-
			Endrin aldehyde	mg/kg	0.1	<0.1	0	-	-
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	-	-
			o,p'-DDT*	mg/kg	0.1	<0.1	0	-	-
			p,p'-DDT	mg/kg	0.1	0.2	0	0.2	91
			Endrin ketone	mg/kg	0.1	<0.1	0	-	-
			Methoxychlor	mg/kg	0.1	<0.1	0	-	-
			Mirex	mg/kg	0.1	<0.1	0	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	0	-	-
			Total CLP OC Pesticides	mg/kg	1	1	0	-	-
			Total OC VIC EPA	mg/kg	1	1	0	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.17	0.16525948881	-	113

OP Pesticides in Soil Method: ME-(AU)-[ENV]AN420

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE272442.020	LB326692.004	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0.00212283459	-	-
		Bromophos Ethyl	mg/kg	0.2	<0.2	0.00060124897	-	-
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.9	0	2	93
		Diazinon (Dimpylate)	mg/kg	0.5	1.9	0.01630689341	2	95
		Dichlorvos	mg/kg	0.5	1.8	0	2	88
		Dimethoate	mg/kg	0.5	<0.5	0.01236015597	-	-
		Ethion	mg/kg	0.2	2.1	0	2	103
		Fenitrothion	mg/kg	0.2	<0.2	0.00050659976	-	-
		Malathion	mg/kg	0.2	<0.2	0.00179600823	-	-
		Methidathion	mg/kg	0.5	<0.5	0.00321181108	-	-
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0.00048244059	-	-
		Total OP Pesticides*	mg/kg	1.7	7.6	0	-	-
	Surroga	tes 2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.46600256221	-	88
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.40901524888	-	74

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

PAH (Polynucies	ir Aromatic Hydrocarbons) in s	60II				Metho	od: ME-(AU)-[ENV]AN420
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE272442.020	LB326692.004	Naphthalene	mg/kg	0.1	5.5	0.72501267394	4	119
		2-methylnaphthalene	mg/kg	0.1	0.9	0.41315460040	-	-
		1-methylnaphthalene	mg/kg	0.1	0.9	0.39699154814	-	-
		Acenaphthylene	mg/kg	0.1	3.6	0.06652507572	4	88
		Acenaphthene	mg/kg	0.1	4.1	0.39688478296	4	93
		Fluorene	mg/kg	0.1	0.4	0.25840455067	-	-

21/10/2024 Page 15 of 19

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE272442.020	LB326692.004	Phenanthrene	mg/kg	0.1	5.0	1.18350271002	4	95
		Anthracene	mg/kg	0.1	3.7	0.45425247854	4	80
		Fluoranthene	mg/kg	0.1	4.4	1.61890085543	4	70
		Pyrene	mg/kg	0.1	4.6	1.65166470878	4	73
		Benzo(a)anthracene	mg/kg	0.1	0.4	0.45566449734	-	-
		Chrysene	mg/kg	0.1	0.4	0.49199594944	-	-
		Benzo(b&j)fluoranthene	mg/kg	0.1	0.4	0.49593967914	-	-
		Benzo(k)fluoranthene	mg/kg	0.1	0.2	0.18141741640	-	-
		Benzo(a)pyrene	mg/kg	0.1	5.0	0.36710360094	4	115
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.2	0.18381256259	-	-
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0.04520753007	-	-
		Benzo(ghi)perylene	mg/kg	0.1	0.2	0.20892946257	-	-
		Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>5.1</td><td>0.50579627061</td><td>-</td><td>-</td></lor=0*<>	TEQ (mg/kg)	0.2	5.1	0.50579627061	-	-
		Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>5.1</td><td>0.55579627061</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	5.1	0.55579627061	-	-
		Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>5.2</td><td>0.60579627061</td><td>-</td><td>-</td></lor=lor*<>	TEQ (mg/kg)	0.3	5.2	0.60579627061	-	-
		Total PAH (18)	mg/kg	0.8	40	9.48363207736	-	-
	Surro	gates d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.48522249467	-	91
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.46600256221	-	88
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.40901524888	-	74

PCBs in Soil

Method: ME-(AU)-[ENV]AN420

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE272442.020	LB326692.004	Arochlor 1016	mg/kg	0.2	<0.2	0	-	-
		Arochlor 1221	mg/kg	0.2	<0.2	0	-	-
		Arochlor 1232	mg/kg	0.2	<0.2	0	-	-
		Arochlor 1242	mg/kg	0.2	<0.2	0	-	-
		Arochlor 1248	mg/kg	0.2	<0.2	0	-	-
		Arochlor 1254	mg/kg	0.2	<0.2	0	-	-
		Arochlor 1260	mg/kg	0.2	0.4	0	0.4	110
		Arochlor 1262	mg/kg	0.2	<0.2	0	-	-
		Arochlor 1268	mg/kg	0.2	<0.2	0	-	-
		Total PCBs (Arochlors)	mg/kg	1	<1	0	-	-
	Surrogates	TCMX (Surrogate)	mg/kg	-	0	0.16117898054	-	110

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE272442.020	LB326710.004	Arsenic, As	mg/kg	1	48	1.79043582295	50	93
		Cadmium, Cd	mg/kg	0.3	42	0.01983734614	50	84
		Chromium, Cr	mg/kg	0.5	50	5.69424101074	50	88
		Copper, Cu	mg/kg	0.5	95	52.4397938662€	50	86
		Nickel, Ni	mg/kg	0.5	79	44.62664748710	50	70 ④
		Lead, Pb	mg/kg	1	48	5.59367027912	50	85
		Zinc, Zn	mg/kg	2	79	44.16669785673	50	69 ④

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

00.0	Ozwania Nawahaw		Danier et au	I I wide	LOD	Danult	Outsinal	Omiles	D0/
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE272442.020	LB326692.004		TRH C10-C14	mg/kg	20	150	15.3091922891	40	78
			TRH C15-C28	mg/kg	45	160	46.2603528224	40	35 ⑨
			TRH C29-C36	mg/kg	45	180	42.8012660749	40	103
			TRH C37-C40	mg/kg	100	110	90.33740028653	-	-
			TRH C10-C36 Total	mg/kg	110	490	04.3708111865	-	-
			TRH >C10-C40 Total (F bands)	mg/kg	210	570	85.6625001059	-	-
		TRH F	TRH >C10-C16	mg/kg	25	140	13.1816544170	40	69
	В	Bands	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	140	12.2274050287	-	-
			TRH >C16-C34 (F3)	mg/kg	90	240	26.8043581461	40	28 ⑨
			TRH >C34-C40 (F4)	ma/ka	120	190	45.6764875427	-	_

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

								•	
QC Sample	Sample Numbe	er	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE272442.020	LB326698.004	Monocyclic	Benzene	mg/kg	0.1	4.8	0.03186178520	5	95
		Aromatic	Toluene	mg/kg	0.1	4.8	0.08464757650	5	93
			Ethylbenzene	mg/kg	0.1	5.0	0.47309579648	5	90
			m/p-xylene	mg/kg	0.2	9.9	1.70818716542	10	82

21/10/2024 Page 16 of 19

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE272442.020	LB326698.004	Monocyclic	o-xylene	mg/kg	0.1	4.9	0.31695795328	5	92
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	0.7	0.95424938828	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.2	8.56223044836	-	82
			d8-toluene (Surrogate)	mg/kg	-	8.5	11.21279861760	-	85
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.8	13.79614763349	-	78
		Totals	Total BTEX*	mg/kg	0.6	29	2.49824091518	-	-
			Total Xylenes*	mg/kg	0.3	15	2.02514511870	-	-

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

	•							•	
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE272442.020	LB326698.004		TRH C6-C10	mg/kg	25	99	32.1835778483€	92.5	72
			TRH C6-C9	mg/kg	20	76	19.64620224664	80	70
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.2	8.56223044836	-	82
			d8-toluene (Surrogate)	mg/kg	-	8.5	11.21279861760	-	85
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.8	13.79614763349	-	78
		VPH F	Benzene (F0)	mg/kg	0.1	3.7	0.03186178520	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	75	29.68533693318	62.5	73

21/10/2024 Page 17 of 19

MATRIX SPIKE DUPLICATES

SE272464 R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = $100 \times SDL / Mean + LR$

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

21/10/2024 Page 18 of 19

id samples expressed on a dry weight basis.

criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found he ps://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ® Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- ® Recovery failed acceptance criteria due to sample heterogeneity.
- (nequired dilution).
- † Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

21/10/2024 Page 19 of 19

ANALYTICAL REPORT

Address

CLIENT DETAILS -

LABORATORY DETAILS

Admin Contact

NEO CONSULTING PTY LTD Client

PO BOX 279 Address

RIVERSTONE NSW 2765

Shane McDermott Manager

SGS Alexandria Environmental Laboratory

Unit 16. 33 Maddox St Alexandria NSW 2015

0416 680 375 +61 2 8594 0400 Telephone Telephone Facsimile +61 2 8594 0499

(Not specified) Facsimile admin@neoconsulting.com.au Email au.environmental.sydney@sgs.com

N10057 SGS Reference SE272464 R0 Project N10057 14 Oct 2024 Order Number Date Received 2 21 Oct 2024 Samples Date Reported

COMMENTS

Email

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique. Sample #1: Asbestos found in approx 5x3x2mm cement sheet fragment. Asbestos analysed by Approved Identifier Yusuf Kuthpudin

SIGNATORIES

Yusuf KUTHPUDIN Asbestos Analyst

> SGS Australia Pty Ltd ABN 44 000 964 278

21/10/2024

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

SGS

ANALYTICAL REPORT

RESULTS -	RESULTS Fibre Identification in soil Method AN602											
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Date Analysed	Fibre Identification	Est.%w/w*					
SE272464.001	BH1	Soil	731g Clay, Sand, Soil, Rocks	14 Oct 2024	21 Oct 2024	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01					
SE272464.003	ВН3	Soil	640g Clay, Sand, Soil, Rocks	14 Oct 2024	21 Oct 2024	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01					

21/10/2024 Page 2 of 5

ANALYTICAL REPORT

Gravimetric Determination of Asbestos in Soil [AN605] Tested: 15/10/2024

			BH1	ВН3
			SOIL	SOIL
			14/10/2024	14/10/2024
PARAMETER	UOM	LOR	SE272464.001	SE272464.003
Date Analysed*	No unit	-	21/10/2024 00:00	21/10/2024 00:00
Total Sample Weight*	g	1	731	640
Bonded ACM in >7mm Sample*	g	0.001	<0.001	<0.001
AF/FA in >2mm to <7mm Sample*	g	0.00001	0.0163	<0.00001
AF/FA in <2mm Sample*	g	0.00001	<0.00001	<0.00001
Asbestos in soil (>7mm ACM)*	%w/w	0.01	<0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	0.002	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	0.002	<0.001
Fibre Type*	No unit	-	Chrysotile	NAD

21/10/2024 Page 3 of 5

SGS

METHOD SUMMARY

METHOD

METHODOLOGY SUMMARY

AN602/AS4964

Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.

AN602/AS4964

Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.

AN602/AS4964

AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

AN602/AS4964

The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-

- a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):
- (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and
- (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

AN605

This technique gravimetrically determines the mass of Bonded Asbestos Containing Material retained on a 7mm Sieve and assumes that 15% of this ACM is asbestos. This calculated asbestos weight is then calculated as a percentage of the total sample weight. Any fibrous asbestos (FA) found in this fraction will be added to the 2-7mm fraction and its mass recorded there

AN605

This technique also gravimetrically determines the mass of Fibrous Asbestos (FA) and Asbestos Fines (AF) Containing Material retained on and passing a 2mm sieve post 7mm sieving. Assumes that FA and AF are 100% asbestos containing. This calculated asbestos weight is then calculated as a percentage of the total sample weight. This does not include free/respirable fibres which are only observed by standard trace analysis as per AN602.

AN605

Bonded asbestos containing material (Bonded ACM) comprises asbestos-containing-material which is sound in condition.

Fibrous asbestos (FA) comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material.

Asbestos fines (AF) includes free fibres, small fibre bundles and also small fragments of bonded ACM that passes through a 7mm sieve - which implies that the bonded ACM fragments have a substantial degree of damage which increases the potential for fibre release.

AN-605

Insofar as is technically feasible, this report is consistent with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment Remediation and Management of Asbestos - Contaminated Sites in Western Australia - May 2009 and NEPM 1999 (2013) schedule B1 section 4...

21/10/2024 Page 4 of 5

FOOTNOTES -

Amosite - Brown Asbestos NA - Not Analysed
Chrysotile - White Asbestos LNR - Listed, Not Required

Crocidolite - Blue Asbestos * - NATA accreditation does not cover the performance of this service .

Amphiboles - Amosite and/or Crocidolite ** - Indicative data, theoretical holding time exceeded.

*** - Indicates that both * and ** apply.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining.

Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining.

Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here; www.sgs.com.gu/en.gh/e

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

21/10/2024 Page 5 of 5

	000		T			CHAIN	N OF	CUS.	TODY	& A1	VALY	SIS F	REQU	EST					Page1 of2
	SGS		Cor	npany ne:		Neo Co	onsulting	g Pty Lt	td			Proj	ect Nam	ne/No:	N1005	7			
SGS	Environmental Services S	vdnev	1100			186 Riv	verstone	e Parad	le			Pı	urchase	Order No:	QUOTI	E NUM	ER: 16	55473	
Unit 16, 33 Maddox Street Alexandria NSW 2015				Addı	ress:	Riverst	stone NSW 2765				Res	Results Required Date:		Next Day/3 day/ <u>Standard</u>					
Telep	hone No: (02) 85940400										Telep	ohone:	0416680375				Fax:		
	mile No: (02) 85940499 au.samplereceipt.sydney@sgs.c	<u>om</u>	Conf	tact Na	ame:	Nick Ca	altabian	0				_			nick@r	neocon	sulting.c	com.au,	admin@neoconsulting.com.au
Lε		onondence)	Que	otation	No:							Ema	il Resul invoic				-		sarah@neoconsulting.com.au,
	SGS EHS Sydney COC			Matri			Т				ΔΝΔΙ	VSIS	REQUE	STED	ensan@	yneoco	nsulting	.com.au	Additional Report Formats
SE272464				(Tick a	s	S			T		ANA		LGOL	- CILD					□ NEPM
		Sample	Water Sample	Other_Cartridge_	OF CONTAINERS		Asbestos NEPM			*								CSV ESDAT DQO GO, Guidelines	
SG S ID	Client Sample ID	Sampling Date/ Time	Soil S	Water	Other	NO. O	REST	Asbes											Notes/Guidelines/LOR/ Special instructions
1	BH1	14/10/2024	х			2	Х	Х											
2	BH2	14/10/2024	х			1	Х												
7	BH3	14/10/2024	х			2	Х	Х											
9	BH4	14/10/2024	х			1	Х												
1																			
			_																
	3-						-												
			-				-												
			-				-												
D. "	and about Done to a bottle a		Dots 7	Cine or	4.4/4.0	/2024 3 _l		Pas	eived By	,,					Dato/T	ime:	(1) 1	0-20	1 235
	quished By: Jacob King				14/10	12024 3	Pill								Date/T		1//0	0.0	(0,71
	quished By:		Date/			0 00			eived By		alad:	Van /	Mo				mou	antoin A	phoetos
	oles Intact: Yes / No nents / Subcontracting detai	ils:	Temp	eratur	e: 6	,8 °C		Sam	ple Sec	unity 56	ealed:	160. /	NU		ndZar	us. e.g.	may co	ontain As	Presins

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Telephone

Facsimile

Email

LABORATORY DETAILS

Admin Contact

NEO CONSULTING PTY LTD Client

Address PO BOX 279

RIVERSTONE NSW 2765

Shane McDermott Manager

SGS Alexandria Environmental Laboratory

Address Unit 16, 33 Maddox St

Alexandria NSW 2015

0416 680 375 +61 2 8594 0400 Telephone +61 2 8594 0499

(Not specified) Facsimile admin@neoconsulting.com.au

au.environmental.sydney@sgs.com Fmail

N10057 Project Samples Received Mon 14/10/2024 N10057 Order Number Report Due Mon 21/10/2024 SE272464 Samples SGS Reference

Yes

SUBMISSION DETAILS

Complete documentation received

This is to confirm that 4 samples were received on Monday 14/10/2024. Results are expected to be ready by COB Monday 21/10/2024. Please quote SGS reference SE272464 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix 4 Soil Type of documentation received COC Date documentation received 14/10/2024 Samples received in good order Yes Samples received without headspace Yes Sample temperature upon receipt 6.8°C Sample container provider SGS Turnaround time requested Standard Samples received in correct containers Yes Sufficient sample for analysis Yes Sample cooling method Ice Bricks Samples clearly labelled Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

SAMPLE RECEIPT ADVICE

Client DETAILS ______ Client NEO CONSULTING PTY LTD

Project N10057

- SUMMARY OF ANALYSIS

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH1	30	14	26	11	7	10	11	7
002	BH2	30	14	26	11	7	10	11	7
003	внз	30	14	26	11	7	10	11	7
004	BH4	30	14	26	11	7	10	11	7

_ CONTINUED OVERLEAF

Page 2 of 3

14/10/2024

- SUMMARY OF ANALYSIS -

SAMPLE RECEIPT ADVICE

CLIENT DETAILS _ Client NEO CONSULTING PTY LTD Project N10057

Identification in soil	imetric Determination bestos in Soil	ury in Soil	ture Content

No.	Sample ID	Fibre lo	Gravim of Asbe	Mercur	Moistur
001	BH1	3	10	1	1
002	BH2	-	-	1	1
003	внз	3	10	1	1
004	BH4	-	-	1	1

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

14/10/2024 Page 3 of 3

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

APPENDIX D

Property Report and Relevant Information

NEO CONSULTING

124 NEW ENGLAND HIGHWAY LOCHINVAR 2321

Property Details

Address: 124 NEW ENGLAND HIGHWAY

LOCHINVAR 2321

Lot/Section 1/-/DP1052148

/Plan No:

Council: MAITLAND CITY COUNCIL

Summary of planning controls

Planning controls held within the Planning Database are summarised below. The property may be affected by additional planning controls not outlined in this report. Please contact your council for more information.

Local Environmental Plans Maitland Local Environmental Plan 2011 (pub. 16-12-2011)

Land Zoning R1 - General Residential: (pub. 21-4-2023)

Height Of Building

Floor Space Ratio

NA

Minimum Lot Size

Heritage

Land Reservation Acquisition

Foreshore Building Line

Acid Sulfate Soils

NA

NA

Class 5

Urban Release Area Urban Release Area

Greenfield Housing Code Area Complying Development Code:

https://www.planningportal.nsw.gov.au/greenfield-housing-code

Building type: 1-2 storey homes, residential alterations and

additions

Development consent authority: Council or accredited certifier

Note: Applications which meet all relevant requirements in the State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 may be approved within 20 days.

Exclusions may apply.

https://legislation.nsw.gov.au/#/view/EPI/2008/572/full

124 NEW ENGLAND HIGHWAY LOCHINVAR 2321

Detailed planning information

State Environmental Planning Policies which apply to this property

State Environmental Planning Policies can specify planning controls for certain areas and/or types of development. They can also identify the development assessment system that applies and the type of environmental assessment that is required.

- State Environmental Planning Policy (Biodiversity and Conservation) 2021: Allowable Clearing Area (pub. 21-10-2022)
- State Environmental Planning Policy (Biodiversity and Conservation) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Exempt and Complying Development Codes) 2008: Greenfield Housing Code Area (pub. 6-5-2018)
- State Environmental Planning Policy (Exempt and Complying Development Codes) 2008: Land Application (pub. 12-12-2008)
- State Environmental Planning Policy (Housing) 2021: Land Application (pub. 26-11-2021)
- State Environmental Planning Policy (Industry and Employment) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Planning Systems) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Primary Production) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Resilience and Hazards) 2021: Land Application (pub. 2
 -12-2021)
- State Environmental Planning Policy (Resources and Energy) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Sustainable Buildings) 2022: Land Application (pub. 29-8-2022)
- State Environmental Planning Policy (Transport and Infrastructure) 2021: Land Application (pub. 2-12-2021)

Other matters affecting the property

Information held in the Planning Database about other matters affecting the property appears below. The property may also be affected by additional planning controls not outlined in this report. Please speak to your council for more information

1.5 m Buffer around Classified

Classified Road Adjacent

Roads

Housing and Productivity

Lower Hunter - Base HPC

Contribution

Local Aboriginal Land Council MINDARIBBA

Regional Plan Boundary Hunter

NEW ENGLAND HIGHWAY LOCHINVAR 2321

Property Details

Address: NEW ENGLAND HIGHWAY LOCHINVAR

2321

Lot/Section 2/-/DP1052148 3/-/DP1052148

/Plan No:

Council: MAITLAND CITY COUNCIL

Summary of planning controls

Planning controls held within the Planning Database are summarised below. The property may be affected by additional planning controls not outlined in this report. Please contact your council for more information.

Local Environmental Plans Maitland Local Environmental Plan 2011 (pub. 16-12-2011)

Land Zoning R1 - General Residential: (pub. 21-4-2023)

Height Of Building

Floor Space Ratio

NA

Minimum Lot Size

Heritage

Land Reservation Acquisition

Foreshore Building Line

Acid Sulfate Soils

NA

NA

Class 5

Urban Release Area Urban Release Area

Greenfield Housing Code Area Complying Development Code:

https://www.planningportal.nsw.gov.au/greenfield-housing-code

Building type: 1-2 storey homes, residential alterations and

additions

Development consent authority: Council or accredited certifier

Note: Applications which meet all relevant requirements in the State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 may be approved within 20 days.

Exclusions may apply.

https://legislation.nsw.gov.au/#/view/EPI/2008/572/full

NEW ENGLAND HIGHWAY LOCHINVAR 2321

Detailed planning information

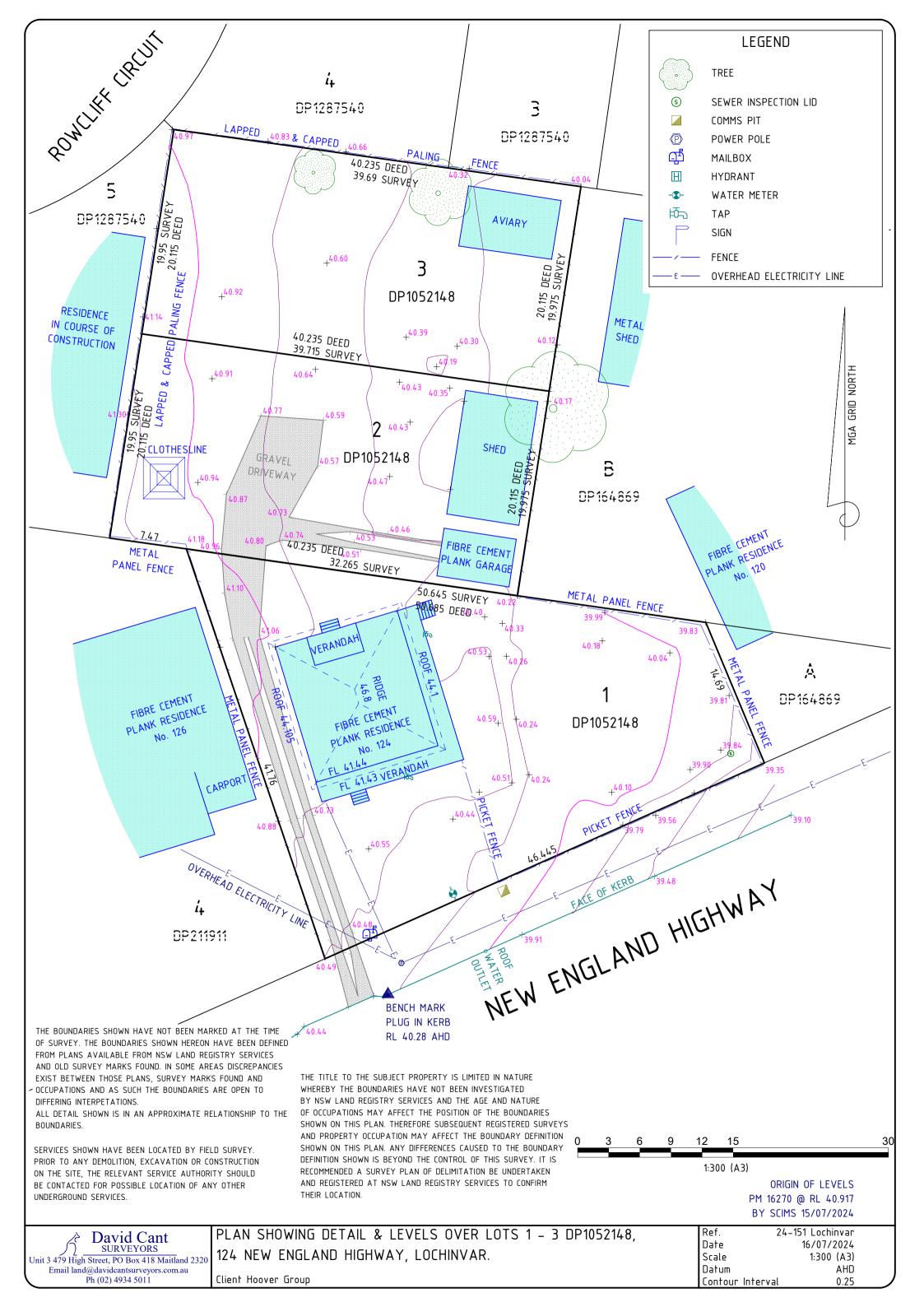
State Environmental Planning Policies which apply to this property

State Environmental Planning Policies can specify planning controls for certain areas and/or types of development. They can also identify the development assessment system that applies and the type of environmental assessment that is required.

- State Environmental Planning Policy (Biodiversity and Conservation) 2021: Allowable Clearing Area (pub. 21-10-2022)
- State Environmental Planning Policy (Biodiversity and Conservation) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Exempt and Complying Development Codes) 2008: Greenfield Housing Code Area (pub. 6-5-2018)
- State Environmental Planning Policy (Exempt and Complying Development Codes) 2008: Land Application (pub. 12-12-2008)
- State Environmental Planning Policy (Housing) 2021: Land Application (pub. 26-11-2021)
- State Environmental Planning Policy (Industry and Employment) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Planning Systems) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Primary Production) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Resilience and Hazards) 2021: Land Application (pub. 2 -12-2021)
- State Environmental Planning Policy (Resources and Energy) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Sustainable Buildings) 2022: Land Application (pub. 29-8-2022)
- State Environmental Planning Policy (Transport and Infrastructure) 2021: Land Application (pub. 2-12-2021)

Other matters affecting the property

Information held in the Planning Database about other matters affecting the property appears below. The property may also be affected by additional planning controls not outlined in this report. Please speak to your council for more information


Bushfire Prone Land Vegetation Buffer

Housing and Productivity Lower Hunter - Base HPC

Contribution

Local Aboriginal Land Council MINDARIBBA

Regional Plan Boundary Hunter

APPENDIX E

Bore and Test pit logs

NEO CONSULTING

186 Riverstone Parade, Riverstone NSW 2765, Australia

Phone: 61 455 485 502

Geotechnical Log - Testpit BH01

 UTM
 : 56H
 Excavator
 : Shovel
 Job Number
 : N10057

 Easting (m)
 : 354,537.43
 Excavator Supplier :
 Client
 : NA

asting (orthing		: 354,537.4: : 6,380,853.		Excavator Supplier: Logged By: Jacob King	Clie		lew England Highway, Lochiny	or NCW 2224
		Not Surve					lew England Highway, Loching	
							New England Highway, Lociling	ar NSW 2321
otal Dep	otn :	0.5 m BGL		Date : 14/10/2024	Loc	Comment :		•
			e	E E		Samples		
_	=	50	Classification Code	Material Description			Ę	
Depth (m)	Soil Origin	Graphic Log	o	SCC	Moisture		Well Diagram	
ŧ	ō	j.	ati	Des	ist		Dia	OP
Del	00	혈	ij	<u>==</u>	Mo		<u>=</u>	
	0,	O	ass	ateı			>	
			ਹ	Ξ				
	Topsoil		CI	Topsoil Sandy to silty CLAY CI: soft medium plasticity dark brown fine	М			
	торзоп		OI	grained sand, trace fine sized gravel, organic, moist, plant rootlets, no	IVI			
				Topsoil Sandy to silty CLAY CI: soft, medium plasticity, dark brown, fine grained sand, trace fine sized gravel, organic, moist, plant rootlets, no visible acm was observed, no hydrocarbon staining or odor was detected.				
0.4				detected.	_			
	Natural	///////	CI/	Natural Silty CLAY CI: firm, medium plasticity, brown, inorganic, moist.				
				BH01 Terminated at 0.5m				
.								
1								
,								
2								
3								
Ĭ								
4								
.								
5								
6								
7								
		1			1			1 1

186 Riverstone Parade, Riverstone NSW 2765, Australia

Phone: 61 455 485 502

Geotechnical Log - Testpit BH02

Job Number : N10057 Easting (m) : 354,560.66 Excavator Supplier: Client

lorthing		: 6,380,864.		Logged By : Jacob King	Proj		4 New England Highway, Lochinvar NSW	
		Not Surve		Reviewed By : Ehsan Zare			4 New England Highway, Lochinvar NSW	2321
otal De	pth :	0.5 m BGL		Date : 14/10/2024	Loc	Comment :		
			9	uc		Samples		
<u>-</u>	.E	60	Classification Code	Material Description			am	
Depth (m)	Soil Origin	Graphic Log	ition	OSO	Moisture		Well Diagram	
Je pt	oil	raph	ifica	ial D	Mois			
_	v)	Ō	ass	lateri			š	
		///////						\perp
	Topsoil		CI	Topsoil Sandy to silty CLAY CI: soft, medium plasticity, dark brown, fir grained sand, trace fine sized gravel, organic, moist, plant rootlets, n visible acm was observed, no hydrocarbon staining or odor was detected.	e M			
				visible acm was observed, no hydrocarbon staining or odor was				
0.4								
	<u>Natural</u>	///////	CI	Natural Silty CLAY CI: firm, medium plasticity, brown, inorganic, mois BH02 Terminated at 0.5m	<u>. </u>			
				Bruz Terminated at 0.5m				
ı								
2								
3								
4								
•								
5								
6								
7								

186 Riverstone Parade, Riverstone NSW 2765, Australia

Phone: 61 455 485 502

Geotechnical Log - Testpit BH03

Job Number : N10057 Easting (m) : 354,539.31 Excavator Supplier: Client : NA

rithing (m) : 6,380,879.76	
Al Depth : 0.5 m BGL Date : 14/10/2024 Loc Comment : Well Diagram Well	
Soil Origin Graphic Log Graphic Log Graphic Log Well Diagram	QIA
Soil Origin Soil Origin Graphic Log Classification Code Well Diagram	PID
	OIA
	PID
Topsoil CI Topsoil Sandy to sitty CLAY CI: soft, medium plasticity, dark brown, fine M grained sand, trace fine sized gravel, organic, moist plant rodilets, no	
visible acm was observed, no hydrocarbon staining or odor was	
Natural CI Natural Silty CLAY CI: firm, medium plasticity, brown, inorganic, moist.	
BH03 Terminated at 0.5m	

186 Riverstone Parade, Riverstone NSW 2765, Australia

Phone: 61 455 485 502

Geotechnical Log - Testpit BH04

Job Number : N10057 Easting (m) : 354,540.91 Excavator Supplier: Client

lorthing		: 6,380,908.		Logged By : Jacob King	Proj		New England Highway, Lochinvar NSW 232	
		Not Surve		Reviewed By : Ehsan Zare			1 New England Highway, Lochinvar NSW 232	.1
otal De	pth :	0.5 m BGL		Date : 14/10/2024	Loc	Comment :		
			9	Ę.		Samples		
=	ے	Бo	Coc	-iptic			a a	
h (m	Origi	i L	tion	esci	šture		Diagra	
Depth (m)	Soil Origin	Graphic Log	ifica	ial D	Moisture		Well Diagram	
_	S	ō	Classification Code	Material Description			×	
		,,,,,,,	O					
	Topsoil		CI	Topsoil Sandy to silty CLAY CI: soft, medium plasticity, dark brown, fin- grained sand, trace fine sized gravel, organic, moist, plant rootlets, no visible acm was observed, no hydrocarbon staining or odor was detected.	e M			
				visible acm was observed, no hydrocarbon staining or odor was	'			
0.4								
	Natural /	///////	CI/	Natural Silty CLAY CI: firm, medium plasticity, brown, inorganic, moist				
				BH04 Terminated at 0.5m				
2								
_								
3								
4								
i								
3								
7								