

Prepared for

Commercial 7 Pty Ltd ATF Commercial 7 Unit Trust

34 Wyndella Road LOCHINVAR NSW 2321

DA Stormwater Management Strategy

P O Box 23 CHARLESTOWN NSW 2290

www.wdegroup.com.au

P: 02 4929 4109

Issue	Description	Author		Reviewer		Approved by	
D	Minor LEC Amendments	KB	06.05.25	AS	06.05.25	KB	06.05.25
С	DA Issue LEC Amendments	KB	02.05.25	AS	02.05.25	KB	02.05.25
В	DA S34 Action Items	KB	28.11.24	AS	28.11.24	KB	28.11.24
Α	DA Issue	KB	25.01.24	AS	25.01.24	KB	25.01.24

Table of Contents

1.	INTRO	DUCTION
	1.1.	Background1
	1.2.	Site Description1
	1.3.	Proposed Development2
	1.4.	Scope of Work
	1.5.	Available Data
	1.6.	Strategy Objectives / Criteria
		1.6.1. Stormwater Runoff Quality Criteria
		1.6.2. Stormwater Runoff Quantity Criteria
		1.6.3. Flooding Criteria
2.	STORM	/WATER MANAGEMENT STRATEGY5
3.	METHO	DDOLOGY
	3.1.	Stormwater Runoff Quality
		3.1.1. MUSIC Parameters
	3.2.	Stormwater Runoff Quantity
		3.2.1. Stormwater Flow Model
		3.2.1.1. Catchment Plan and Model Data 8
		3.2.1.2. Rainfall Data10
		3.2.1.3. DRAINS IL/CL Model Parameters 10
		3.2.1.4. Model Sub-Catchment Data11
4.	MODE	L RESULTS
	4.1.	Stormwater Runoff Quality12
		4.1.1. MUSIC Results – Post Development Land Use (No Treatment)
		4.1.2. MUSIC Results – Post Development Land Use (with Treatment)
		4.1.2.1. Treatment Devices13
		4.1.2.2. Modelling Results 15
	4.2.	Stormwater Runoff Quantity
		4.2.1. DRAINS Model Results
		4.2.2. DRAINS Modelled Detention Basin and Outlet Controls
5.	SOIL A	ND WATER MANAGEMENT DURING CONSTRUCTION
6.	SUMM	ARY AND CONCLUSIONS
7.	REFER	20 RENCES

List of Figures

Figure 1	Locality Plan

- Figure 2 DRAINs Node Layout
- Figure 3 MUSIC Node Layout

List of Appendices

- Appendix A Development Layout Plan
- Appendix B Civil & Stormwater Management Plan

List of Tables

Table 1:	MUSIC Rainfall-Runoff Parameters	7
Table 2:	Adopted Land Use Baseflow and Stormflow Concentration Parameters	8
Table 3:	Adopted Initial Loss-Continuing Loss Values	11
Table 4:	Roughness parameter values, n*, adopted in the DRAINS models	11
Table 5:	Area Percentage values adopted in the DRAINS models	11
Table 6:	MUSIC Results for the Site's Post Development Land Use (No Treatment)	12
Table 7:	Atlan Baffle Box Parameters	14
Table 8:	Atlan Filter Vault Full Height Treatment Parameters	14
Table 9:	Atlan Filter (SF.30-EMC) Parameters	15
Table 10:	MUSIC Results for the Site's Post Development Land Use (with Treatment)	15
Table 11:	MUSIC Model Treatment Train Effectiveness Results	15
Table 12:	DRAINS Ensemble Peak Flow Results with Detention Basin 1	16
Table 13:	DRAINS Ensemble Peak Flow Results with Detention Basin 2	16
Table 16:	Summary of Basin and Outlet Structures	17

List of Acronyms

AEP	Annual Exceedance Probability
AHD	Australian Height Datum
AR&R	Australian Rainfall and Runoff, Commonwealth of Australia, 2019
BASIX	Building Sustainability Index
ВОМ	Bureau of Meteorology
СС	Construction Certificate
DA	Development Application
EY	Exceedance per Year
FFL	Finished Floor Level
GPT	Gross Pollutant Trap
IFD	Intensity Frequency Duration
I.L	Invert Level
LGA	Local Government Area
MCC	Maitland City Council
NRAR	National Resources Access Regulator
PET	Potential Evapotranspiration
PSD	Permissible Site Discharge
R.L	Reduced Level
TWL	Top Water Level
WDG	Wallace Design Group

1. INTRODUCTION

1.1. Background

Wallace Design Group has been engaged by Commercial 7 Pty Ltd ATF Commercial 7 Unit Trust to formulate a Stormwater Management Strategy to support the Development Application for a 182 lot Manufactured Home Estate located at 34 Wyndella Road, Lochinvar NSW 2321. The site is situated within the Maitland City Council Local Government Area. The stormwater drainage strategy will address both stormwater quantity and quality requirements for the proposed development in accordance with ARR 2019, *Maitland City Council Development Control Plan* and *Manual of Engineering Standards (MOES)*.

A locality plan is shown in Figure 1.

Figure 1: Site Locality Plan

1.2. Site Description

The site is 10.74 ha of land located at 34 Wyndella Road, Lochinvar NSW and is generally bound by rural residential land to the north, south, east and west. The land is zoned as rural residential and is suitable for the proposed land use.

The site is bisected by three tributaries, herein referred to as the western, middle, and eastern tributaries. All three tributaries have no defined beds or banks within the mapped hydro lines. The existing western tributary drains to and under Wyndella Road immediately south of the proposed entry drive, whereas the middle and eastern catchments drain towards the south

across Lots 223 and 224, DP246447 ultimately crossing Wyndella Road near its intersection with the New England Highway.

The development application is proposing to divert all three tributaries and their upper catchments to Wyndella Road. The Western catchment will maintain its existing flow path through the culverts immediately south of the proposed access drive; whereas the middle and eastern catchments will be divert with a bypass line and overland flow path to Wyndella Road and carried through a pit and pipe network to the lower crossing near the Wyndella Road intersection to the New England Highway (refer to the Wyndell Road Upgrade plans prepared by WDG, dated May 2025, Appendix C)

1.3. Proposed Development

The development proposes a 182 lot Manufactured Home Estate with additional community amenities including a central community centre, bowling lawn, pool and pickle ball court. A copy of the development layout plan is shown in Appendix A.

Access to the development will be maintained off Wyndella Road to the West which is proposed to be upgraded with this development and in conjunction with the neighbouring development to the west. Part road construction of the eastern side of Wyndella Road will consist of a 7m wide thoroughfare with kerb & gutter and a 1.5m wide footpath along the eastern side of the road corridor. Immediately in front of the site will be a BAR for access into the proposed development. The Wyndella Road Upgrade plans are further detailed in Appendix B.

The main entry road into the site is a divided road with the ingress and egress both maintaining 5m widths. The internal road network consists of north-south and east-west crossing roads in generally a grid formation as can be seen on the overall development plan. The internal road network is further detailed in the Civil and Stormwater Management Plan for the development (refer to Appendix B)

The upstream stormwater catchment which currently drain through the development site will have the stormwater diverted around, through and to Wyndella Road to remove all discharge from draining through the downstream property and towards the legal point of discharge (e.g. Wyndella Road).

The upstream stormwater catchment, currently bisecting the site within the existing stormwater crossings with be redirected through the site. The redirected network is further detailed in the Stormwater Management Plan.

The proposed development stormwater will be controlled for both quality and quantity through a stormwater pit and pipe network, GPT's and Stormwater Filters, and on-site detention basins. Rainwater reuse tanks, although not specifically modelled in MUSIC or DRAINs, will be provided for all residential lots in accordance with BASIX and Council guidelines at the time of construction and as part of the Construction Certificate stage of development.

Stormwater quality controls are to comply with *Maitland City Council – Manual of Engineering Standards.* Review of Council's guidelines indicate that stormwater quality controls are to have a target percentage reduction over the post-developed water quality outputs. To assess the development for water quality, a MUSIC water quality model with the proposed development being cleansed by Atlan Stormwater Filters is required. These are further detailed in Section 3.1.

Stormwater quantity controls are to comply with Maitland City Council – Manual of Engineering Standards and Maitland City Council's DCP. Design is to be in accordance with current ARR 2019 methodologies (ref. ARR 2019 Guidelines, online version). The design presented within this report has assessed all required output nodes for each type of use in a manner that maintain developed flow rates to the existing stormwater flow regimes.

1.4. Scope of Work

This Strategy has been undertaken to provide the following information in support of the Development Application:

- Identification of stormwater quality and quantity control requirements within Maitland City Council.
- Identify the impacts of the proposed development on existing waterways.
- Develop a strategy to minimise the stormwater discharge effects of the development on downstream properties/waterways.
- Provide concept design of the proposed stormwater management facilities in accordance with the adopted strategy.

1.5. Available Data

The following available information was utilised in the preparation of this report:

- A development masterplan supplied by BDA Architecture. A copy of the development layout plan is shown in Appendix A.
- Detailed Survey supplied by Commercial 7 Pty Ltd ATF Commercial 7 Unit Trust, as prepared by de Witt Consulting Surveyors, dated August 2023, Ref 14576.

1.6. Strategy Objectives / Criteria

1.6.1. Stormwater Runoff Quality Criteria

Stormwater runoff from the development should be treated prior to discharge, consistent with normal practice for new developments, and with consideration to opportunities for integration with existing site features and topography.

The methodology for Stormwater Runoff Quality typically involves selection of stormwater quality treatment devices based on identified opportunities for stormwater quality management referencing the development site and catchment conditions, and normal best practice.

Stormwater quality management for the subject site could comprise of a series of treatment train measures consisting of:

- Rainwater harvesting / reuse for reducing runoff volumes;
- Biofiltration, bioretention, sedimentation, or filtration basins
- Grassed swales;
- Water quality control ponds; and/or

• Gross pollutant traps (GPT's), or Proprietary water quality improvement devices for primary, secondary and/or tertiary treatment.

1.6.2. Stormwater Runoff Quantity Criteria

The development shall consider stormwater quantity controls in accordance with Council's DCP and *Manual of Engineering Standards* which stipulates that developed stormwater flowrates shall not exceed the pre-developed flow rates for all storms up to and including the 1% Annual Exceedance Probabilities (AEP). The stormwater quantity controls will be conceptually sized and designed using DRAINs stormwater modelling software, the Initial-Loss Continuing Loss (IL-CL) design methodology, the guidelines and methodologies set out in Book 9 of *Australia Rainfall and Runoff: A Guide to Flood Estimation, 2019* (see references).

Stormwater flow management criteria includes:

- The adoption of a minor and major flow considerations to the design of the stormwater flow management system in accordance with Council's stormwater drainage design guidelines.
- Conveyance of major flows through the site in a safe manner.
- Limiting the post-development discharge rates from the subject site to the predevelopment discharge rates for all storm events up to and including the 1%AEP.

1.6.3. Flooding Criteria

Developable lot areas should have sufficient buildable area for a dwelling to be located at or above the flood planning level, which is the 1% AEP flood level plus 500mm freeboard for residential developments.

Review of the Maitland City Council's Public GIS Online Mapping System indicates the development is not within a flood studied area and therefore has no defined Flood Planning Level or PMF level.

2. STORMWATER MANAGEMENT STRATEGY

The proposed stormwater management strategy involves:

- The capture roof stormwater runoff, prior to discharge into the stormwater network, in a rainwater reuse tank in accordance with BASIX requirements for each building (expected to be 2500 to 3000L reuse tank). The reuse tanks have not been modelled as part of the development application; however, they are expected to contribute to the overall Stormwater Management Strategy.
- No additional provision for storage volume within the reuse tanks have been considered to offset on-site detention storage volume.
- Outlet controls designed to control stormwater flows for the minor and major AEP storm events in accordance with Council guidelines.
- Capture of stormwater from lots and road areas by a conventional pit and pipe drainage network located in the street and inter-allotment drainage easements.
- Diversion of the 4EY storm event through Atlan StormFilters for primary treatment of stormwater flows for reduction of TSS, TP and TN loadings to meet Council's stormwater quality targets.
- Diversion of stormwater flows to on-site detention basins for control of post-developed stormwater flows to pre-developed stormwater flow conditions in accordance with Council guidelines.

The modelling for the conceptual plan provided with the Development Application considers a holistic approach and looks at single source nodes for stormwater quality and quantity (e.g single nodes representing larger catchment areas). The stormwater quality and quantity plan detailed in the Civil and Stormwater Plans as part of the DA Package is considered conceptual in nature and subject to change with the detailed design to be undertaken at Construction Certificate Stage, and as such, an updated model and report will be provided with the design at the time of Construction Certificate application.

3. METHODOLOGY

3.1. Stormwater Runoff Quality

The methodology for Stormwater Runoff Quality typically involves selection of stormwater quality treatment devices based on identified opportunities for stormwater quality management referencing the development site and catchment conditions, and normal best practice.

The performance of the stormwater management plan was undertaken using the MUSIC-X stormwater water quality modelling software. MUSIC X is a continuous simulation water quality model. The pollutants considered in the water quality modelling were total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN), and Gross Pollutants (GP) which are typical components of stormwater runoff.

MUSIC input parameters include:

- Rainfall and potential evapotranspiration data.
- Catchment area and percentage impervious.
- Hydrologic parameters.
- Statistical pollutant generation parameters

MUSIC outputs include:

- Average annual pollutant export loads.
- Treatment train effectiveness, expressed in terms of pollutant reduction.

Input parameters used for modelling were derived from local data taken from Maitland Airport (Bureau of Meteorology Station Number: 61428),eWater's BOM Climate Dataset, parameter values in the *MUSIC User Manual* (version 6.1), and *Using MUSIC in Sydney's Drinking Water Catchment, A Sydney Catchment Authority Standard* (Published by Sydney Catchment Authority, Penrith, December 2012).

3.1.1. MUSIC Parameters

Land Use Types

The post-developed land use was modelled using the following MUSIC source nodes:

- Urban Residential (Combined Roof & Lots, 85% impervious)
- Urban Mixed Use (Communal Facility, 100% impervious)
- Urban Sealed Road (Paved, 100% Impervious)
- Urban Revegetated Land (Grass, 100% Pervious)

The pollutant generation characteristics of the surface types are shown in Table 2 below.

Rainfall and Evapotranspiration

The rainfall data and monthly average areal potential evapotranspiration (PET) values used for the modelling were obtained from data sourced from the Bureau of Meteorology Station Number: 61428 (Maitland Airport AWS) templated meteorological MUSIC file.

Time Step

The MUSIC model was run with a time step of 6 minutes, as contained within the Maitland Airport Rainfall datasets.

Hydrology

The MUSIC hydrology parameters for each land use type are summarised in Table 1. The individual land use nodes, rainfall thresholds, pervious area properties, and groundwater parameters were determined using Clay Loam *Using MUSIC in the Sydney Drinking Water Catchment, 2019*.

Table 1: MUSIC Rainfall-Runoff Parameters	
---	--

Parameter		Site Land Use				
	Commercial	Revegetated Lands	Roof/Lots	Sealed Roads		
Impervious Area Properties						
Rainfall Threshold (mm/day)	1.5	1.0	1.0	1.5		
Pervious Area Properties						
Soil Storage Capacity (mm)	119	119	119	119		
Initial Storage (% of Capacity)	25	25	25	25		
Field Capacity (mm)	99	99	99	99		
Infiltration Capac. Coeff a	180	180	180	180		
Infiltration Capac. Exp. – b	3.0	3.0	3.0	3.0		
Groundwater Properties						
Initial Depth (mm)	10	10	10	10		
Daily Recharge Rate (%)	25	25	25	25		
Daily Baseflow Rate (%)	25	25	25	25		
Daily Deep Seepage Rate (%)	0	0	0	0		

Event Mean Concentrations

The pollutant baseflow and stormflow concentration parameters for the existing state and proposed land use types were determined from *Using MUSIC in Sydney's Drinking Water Catchment, Tables 4.6 and 4.7 (See references)* based on Rural Residential and Forest land uses. The adopted pollutant parameters for the specified land use types are provided in Table 2.

Land Use and Flow Type	Total Suspended Solids (TSS) (log₁₀ mg/L)		Total Phosphorus (TP) (log₁₀ mg/L)		Total Nitrogen (TN) (log₁₀ mg/L)	
	Mean	Std. Dev	Mean	Std. Dev	Mean	Std. Dev
Baseflow						
Lot	1.2	0.17	-0.85	0.19	0.11	0.12
Commercial	1.2	0.17	-0.85	0.19	0.11	0.12
Road	1.20	0.17	-0.85	0.19	-0.11	0.12
Revegetated	1.15	0.17	-1.22	0.19	-0.05	0.12
Forest	0.9	0.13	-1.50	0.13	-0.14	0.13
Stormflow						
Residential	2.15	0.32	-0.60	0.25	0.30	0.19
Road	2.43	0.32	-0.30	0.25	0.34	0.19
Revegetated	1.95	0.32	-0.66	0.25	0.30	0.19
Commercial	2.15	0.32	-0.60	0.25	0.30	0.19

Table 2: Adopted Land Use Baseflow and Stormflow Concentration Parameters

NOTE: Roofs have no base flow value, per Using MUSIC in the Sydney Drinking Water Catchment, 2019

3.2. Stormwater Runoff Quantity

Pre- and post-development stormwater flowrates are estimated using hydrological computer modelling software to demonstrate the magnitude of the local catchment flowrates in accordance with ARR 2019 and Council guidelines.

The post-development discharge is compared to the post-developed discharge without water quality controls, and if higher, detention is warranted in accordance with Council's standard requirements.

3.2.1. Stormwater Flow Model

A stormwater flow model was prepared for the purpose of estimating pre- and postdevelopment flowrates for the concept plan to demonstrate the magnitude of stormwater flows of the local catchments for the 20% (minor), 5% (intermediate) and 1% AEP (major) using both the ensemble and individual storm methodologies as outlined in ARR 2019.

3.2.1.1. Catchment Plan and Model Data

The surface runoff flowrates from the development were modelled using DRAINS hydrological modelling software for the pre- and post-developed state. The Initial Loss/Continuing Loss (IL/CL) Methodology for analysing stormwater flows was utilised to estimate the stormwater flowrates with the IL and CL values being determined based on the hierarchal approach as provided in ARR 2019 for developments in NSW.

The pre- and post- developed stormwater flowrates were analysed at two points of discharge from the site which are located at the southwest (Basin No.1) and southeast (OSD Tank No. 2) corner of the development where the existing tributaries discharge from the site. The outlet control structures for each are design to control to the pre-development condition; however, the stormwater discharge from Basin No. 1 and OSD Tank No. 2, along with the upstream stormwater flows will be diverted to and discharge to Wyndella Road as the legal point of discharge. The bypass lines are designed to cater for the 1% AEP with 50% blockage, and no overflow to the southern lots.

The internal catchments were subdivided in two main sub-catchment areas. These areas consist of developed areas (Catchments P1 to P4) draining to two GPT and Atlan Filter Systems and an on-site detention basin (Basin No. 1) located on the western boundary; and, the remaining developed area (Catchment 5), draining to a third Atlan Filter System and on-site detention Tank (refer to Appendix B). The remaining proposed on-site Catchments P6 and P7 cannot be captured in the system and will bypass the on-site detention tanks.

On-site detention was analysed using the above-described concept, and it is noted that a more detailed catchment plan and stormwater system analysis for the development will be completed at the time of Construction Certificate application (for each stage) to further detail the stormwater pit and pipe network, rainwater reuse tanks, and on-site detention basins associated with each stage of development. The conceptual DRAINs node layout is shown in Figure 2.

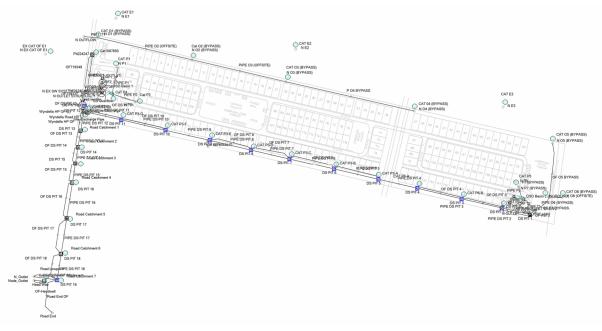


Figure 2: DRAINs Node Layout

The catchments and stormwater networks were modelled using the following base assumptions obtained from our research, Council information, and other on-line data (e.g. BOM website, ARR website, etc.):

• Model based on overall concept catchment areas and does not consider individual catchment areas for each stage of development or its pit and pipe network.

- Per above point, the model excluded the 50% blockage factor on all sag pits, and 20% blockage factor on all on-grade pits for major storm events. The model will be amended at Construction Certificate stage to include this criteria.
- A Rainwater Reuse Tank (RWT's) will be provided for each house as required by BASIX. An additional storage volume within the RWT's may be considered at the time of Construction Certificate application; however, for the conceptual design, separate storage within the rainwater reuse tank was not considered.
- On-site detention control for the minor, intermediate, and major storm events in accordance with Council Guidelines.

The methodology for stormwater quantity comprised quantitative analysis of available data to estimate pre- and post-developed stormwater flow behaviours from the development site. The analysis involved examination of surface hydrology to assess runoff characteristics from the site and sizing of stormwater mitigation devices to negate the impact of the development on existing flowrates.

This involved the following steps:

- Estimation of pre- and post-developed peak stormwater flowrates at the downstream drainage outlets of the site using the DRAINs software modelling package.
- The critical storm was then selected for each AEP from the 20% to 1% AEP, based on the peak discharge from the site for each storm event. The hydrographs of these 'critical' storms were plotted to determine the approximate volume of storage required.
- Identification of potential locations for on-site stormwater detention structures to reduce post-development discharge flowrates and revise the developed model in DRAINs to include the detention and outlet structures required to reduce postdevelopment discharge flowrates.

3.2.1.2. Rainfall Data

Rainfall data for the 12EY to 1% AEP storm events were obtained through the BOM website (e.g. ARR Data HUB) for storm durations of 10 minutes to 4.5 hours for downloading directly into the DRAINS modelling software. These data sets were produced using the following geographical data points:

Location	Lochinvar, NSW
Latitude	= 32.696 S
Longitude	= 151.465 E

3.2.1.3. DRAINS IL/CL Model Parameters

Table 3 summarises the initial loss and continuing loss data sets adopted for use in DRAINs. These values were assessed utilising the 5-step hierarchal approach as outlined in ARR 2019. Based on our research regarding steps 1 through 4 of this process, no data existing that would appropriately represent this site; therefore, Step 5 was assumed appropriate for this development. In NSW the adopted CL value is to be multiplied by 0.4; therefore the adopted CL value has been modified from the value provided on the BOM website. This reduction provides an additional factor of safety for the design values adopted.

Parameter	Adopted Values	
Impervious Area Initial Loss (mm)	1	
Impervious Area Continuing Loss (mm)	0	
Pervious Area Initial Loss (mm)	18	
Pervious Area Continuing Loss (mm)	2.0 (0.8 adopted)	

Table 3: Adopted Initial Loss-Continuing Loss Values

NOTE: Value for CL multiplied by 0.4 in accordance with ARR 2019.

3.2.1.4. Model Sub-Catchment Data

Surface roughness values, n*, used in the DRAINS models are summarised in Table 4.

Table 4: Roughness parameter values, n*, adopted in the DRAINS models

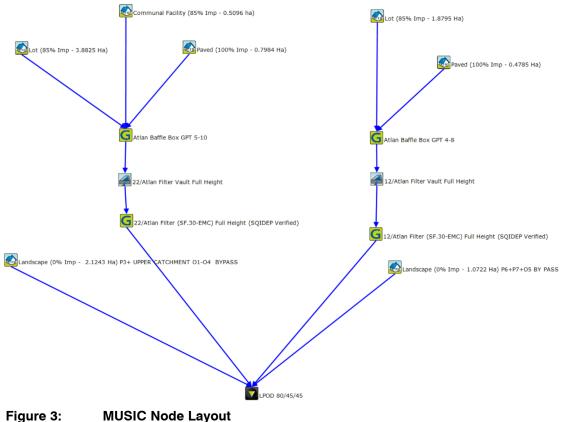
Model - surface type	Surface roughness 'n*' value
Forest Channel	0.15
Short prairie grass	0.10 to 0.21
Pervious (grassed) areas	0.21
Impervious (paved) areas	0.011

Sub-catchment pervious and impervious area percentage values used in the DRAINS modelling are summarised in Table 5 below.

Table 5: Area Percentage values adopted in the DRAINS models

Model - type	Area Percentage		
	Impervious	Pervious	
Existing Catchments (Existing Site)			
E1, E2	0	100	
E3	0	100	
Existing Catchments - Bypass (Developed Site)			
01, 02, 03, 04, 05	0	100	
O6	0	100	
Proposed Catchments (Controlled)			
P1, P2, P5	65	35	
P3, P4, P6	0	100	
Proposed Catchments (Controlled)			
P7 (located on-site)	0	100	
	0	100	

4. MODEL RESULTS


4.1. Stormwater Runoff Quality

4.1.1. MUSIC Results – Post Development Land Use (No Treatment)

The modelled average annual pollutant loads leaving the site in its post development land use state, without any treatment measures, is shown in Table 6. Pollutant load estimates are provided for total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN). Figure 3 shows the node layout used in the MUSIC modelling.

Table 6: MUSIC Results for the Site's Post Development Land Use (No Treatment)

Land Use	Average Annual Pollutant Load (kg/yr)			
	Total Suspended Solids (TSS)	Total Phosphorus (TP)	Total Nitrogen (TN)	
Post Development	10,480	16.9	111.0	

4.1.2. MUSIC Results – Post Development Land Use (with Treatment)

The MUSIC model results for the post development land use, with treatment measures, is documented below, enabling the evaluation of the treatment train effectiveness. In assessing treatment devices used for the development, we assessed a series of treatment train measures

to minimise the environmental impact of the development. The assessment included the following measures:

- Rainwater harvesting / reuse for reducing runoff volumes;
- Biofiltration, bioretention, sedimentation, or filtration basins
- Water quality control ponds; and/or
- Gross pollutant traps (GPT's), or Proprietary water quality improvement devices for primary, secondary and/or tertiary treatment:

The measures chosen will minimise the impact of the development on the adjacent waterways.

4.1.2.1. Treatment Devices

Treatment devices modelled in MUSIC for the treatment of runoff from the developments impervious surface areas include:

- Rainwater Tanks (considered, but not included in the modelling)
- Atlan Storm Filter System; and,
- GPT's.
- Swales (not modelled as part of the concept, but may be considered at CC stage) for areas that cannot be capture into the proposed treatment measures).

4.1.2.1.1. Rainwater Tanks

The rainwater tank node, *although not specifically modelled* will form a part of the Stormwater Management Strategy. The MUSIC model will be updated at Construction Certificate Stage as part of the overall design strategy to include a RWT node immediately downstream of the roof area node, using the default rainwater tank treatment node parameters within MUSIC. The rainwater tank node will generally include the following node data for each lot:

- Rainwater tank volume of 2.2kL, or as required by BASIX, per each residential lot.
- Daily and annual water usage demand based on Section 4.6.7, Non-potable water demands for rainwater tanks, *Using MUSIC in Sydney's Drinking Water Catchment*, 2019.

4.1.2.1.2. Atlan Baffle Box GPT

The initial treatment devices are two Atlan Baffle Box GPT structures. The GPT is a proprietary structure for the removal of Gross Pollutants and the GPT nodes were included as the first node in the treatment train immediately upstream of the Atlan StormFilter System. There are two GPT's for the development which are summarised in Table 7 below.

Parameter	GPT Structure		
Inlet Properties	GPT 4-8	GPT 5-10	
Low Flow By-pass (m ³ /s)	0.0	0.0	
High Flow Bypass (m³/s), (4EY Peak Storm)	0.140	0.274	
<u>Target Pollutant Removal Properties</u>	80	80	
TSS	80	80	
	30	30	
TP	00		
TP TN	10	10	

Table 7: Atlan Baffle Box Parameters

4.1.2.1.3. Atlan StormFilter System

The secondary treatment for the development is the Atlan StormFilter system. The Atlan StormFilter System is a proprietary structure for the primary removal of TSS, TP and TN and is included as the second treatment node in the treatment train prior to discharge into on-site detention basins. There are two node inputs required to analyse the Atlan StormFilter System which are the Filter Vault (Full Height) and the SF.30 EMC Filters. These parameters are provided in Table 8 and Table 9.

Table 8:	Atlan Filter Vault Full Height Treatment Parameters
----------	---

Parameter	Filter	Vaults
Inlet Properties	12/Atlan	22/Atlan
Low Flow By-pass (m³/s)	0	0.0
High Flow Bypass (m³/s)	100	100
Storage Properties		
Extended Detention Depth (m)	12	22
Surface Area (m ²)	0.85	0.85
Exfiltration Rate (mm/hr)	0	0
Evaporative Loss as % of PET (%)	0	0
Outlet Properties		
Low Flow Pipe Diameter (mm)	137	185
Overflow Weir Width (m)	4	6
Submerged Zone with Carbon Present	0.07	0.071

Parameter	Filter (SF.30-EMC)		
Inlet Properties	12/Atlan	22/Atlan	
Low Flow By-pass (m³/s)	0.0	0.0	
High Flow Bypass (m³/s)	0.036	0.066	
Target Pollutant Removal Properties			
TSS	85	85	
ТР	74	74	
TN	59	59	
Gross Pollutants	0	0	

Table 9: Atlan Filter (SF.30-EMC) Parameters

4.1.2.2. Modelling Results

The modelled average annual pollutant loads leaving the site in its post development land use, utilising treatment measures, is shown in Table 10. Pollutant load estimates are provided for total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN). Figure 3 shows the node layout used in the MUSIC modelling.

Table 10: MUSIC Results for the Site's Post Development Land Use (with Treatment)

Land Use	Averag	e Annual Pollutant Load	d (kg/yr)
	Total Suspended Solids (TSS)	Total Phosphorus (TP)	Total Nitrogen (TN)
Post Development	605	3.65	44.5

A direct comparison between the existing state and post development pollutant loads with treatment generated by the modelled sources, is summarised in Table 11.

Pollutant	Export	Treatment Train	
	Pre Development	Post Development with treatment measures	Effectiveness (% Reduction)
TSS (kg/yr)	10,480	605	94.2%
TP (kg/yr)	16.9	3.65	78.4%
TN (kg/yr)	111	44.5	59.9%
Gross Pollutants	1364	0	100%

Table 11: MUSIC Model Treatment Train Effectiveness Results

The treatment train effectiveness results above indicate that the pollutant reduction performance provides for a Neutral or Beneficial Effect in accordance with the requirements of *MidCoast Council's WSD Guidelines*, Oct. 2019 and as requested in the pre-development application minutes.

4.2. Stormwater Runoff Quantity

4.2.1. DRAINS Model Results

Following determination of the pre-developed peak flow rates, the post-developed DRAINs model was run for various design storm durations and stormwater drainage configurations to assess the preliminary conveyance sizing required to convey the 20% to 1% AEP through the site and for assessment of stormwater detention requirements.

The model-predicted stormwater flowrates for the pre- and post-development conditions were assessed using both the ensemble and individual storm methodologies. Within the DRAINs modelling software, the peak ensemble storm for the pre- and post-development storm was initially assessed to determine the peak median storm for each design storm event. Using output generated from this assessment preliminary sizing of the on-site detention basins was undertaken. The model-predicted stormwater flowrates were further assessed using the preliminary basin sizing for the pre- and post-development conditions.

The on-site detention basin's model predicted flowrates for the pre- and post-developed state with detention using the ensemble peak flow storms and storm bursts for On-site Detention Basin No. 1 and Tank No. 2 are compared and summarised in Table 12 and Table 13, respectively.

AEP	Existing State		Developed State		% Change
(%)	Peak Flowrate (m³/s)	Critical Storm Duration/Burst (mins, burst)	Peak Flowrate (m³/s)	Critical Storm Duration/Burst (mins, burst)	
20	0.450	25, 4	0.426	45, 9	-5.3
5	0.720	20, 8	0.577	60, 6	-19.8
1	1.148	15, 8	0.925	45, 6	-19.4

Table 12: DRAINS Ensemble Peak Flow Results with Detention Basin No. 1

Table 13:	DRAINS Ensemble Peak Flow Results with Detention Tank No. 2
-----------	---

AEP	Existing State		Developed State		% Change
(%)	Peak Flowrate (m³/s)	Critical Storm Duration/Burst (mins, burst)	Peak Flowrate (m³/s)	Critical Storm Duration/Burst (mins, burst)	
20	1.142	30, 8	1.07	45, 10	-6.3
5	1.910	25, 6	1.77	30, 8	-7.3
1	2.989	20, 10	2.83	20, 10	-5.3

4.2.2. DRAINS Modelled Detention Basin and Outlet Controls

The conceptual design considers two (2) on-site detention systems (one above ground basin and one in-ground basin) with pre-treatment measures undertaken before stormwater enters the Basin 1 or 2. Table 14 shows a summary of the concept outlet control(s) used in the

DRAINs modelling for the proposed development. The values are subject to change with the detailed Construction Certificate Design.

Basin	Parameter	Description
1	Basin Storage Volume 1%AEP	2290m ³
	Outlet Structure, Minor Flow Bypass	2-350mm, I.L 39.75
	Outlet Structure, Intermediate & Major Flow Bypass	425mm Weir
	Outlet Structure, Top (set at 1%AEP level)	2.4m weir w/grated top, I.L 41.45
	Emergency Overflow Structure	3.0m weir, R.L 41.5
	Outlet Pipe from Basin	750mm RCP
2	Basin Storage Volume	1035m ³
	Outlet Structure, Minor Flow Bypass	1-250mm Orifice, I.L 55.4
	Outlet Structure, Major Flow Bypass	1-250mm Orifice, I.L 56.6
	Emergency Overflow Structure	1.8m Weir at R.L 57.7
	Outlet Pipe from Tank	450mm RCP

 Table 14:
 Summary of Basin and Outlet Structures

NOTE: The Stormwater Management Strategy does not include any individual lot on-site OSD tanks to ensure the development can maintain controls without individual lot development controls

5. SOIL AND WATER MANAGEMENT DURING CONSTRUCTION

Soil and water management devices to minimise land disturbance during the development construction phase are to be provided in accordance with the publication *Managing Urban Stormwater: Soils and Construction* (Landcom, 2004).

STAGE REQUIREMENTS

Prior to each stage of works, and as part of the detailed design for each stage, a Staged Erosion and Sedimentation Control Plan will be prepared illustrating all controls to be implemented for that Stage of works.

PREPARATION OF EROSION AND SEDIMENTATION CONTROLS

A detailed erosion and sedimentation control plan for each stage of works is to be undertaken during the detailed design stage of the proposed development. The erosion and sedimentation control plan should generally contain the following range of management practices for effective soil and water management during a land disturbance phase:

- Minimise the area of soil disturbed and exposed to erosion by phasing works so that land disturbance is confined to minimum areas.
- Erect barrier fencing to minimise disturbance by preventing vehicular and pedestrian access to restricted areas.
- Limit access for plant etc. to current construction area to limit amount of disturbed area.
- Conserve topsoil for site rehabilitation/revegetation when site works are complete.
- Installation of sediment filters, such as silt fences, straw bales, or turf strips downstream of disturbed areas.
- Control water flow from the top of, and through the development area. In particular, divert upslope runoff around works and limit slope length to 80 metres on disturbed lands if rainfall is expected.
- Where appropriate, reduce the effects of wind erosion by controlling on-site traffic movement and watering bare soil areas.
- Provision of shaker humps / pads near construction entry and exit locations to remove excess soil materials from vehicle tyres and underbodies.
- Rehabilitate disturbed lands quickly.
- Ensure that all erosion and sediment control measures are kept in a properly functioning condition until all site disturbance works are completed and the site is rehabilitated.

The erosion and sedimentation controls are the minimum requirements for all construction activity, and where deemed necessary, may be modified by the certifying authority at the time of construction.

6. SUMMARY AND CONCLUSIONS

At Source Management

Although a BASIX's requirements review is not a specific requirement of this stormwater management strategy, it is anticipated that BASIX's requirements would require all individual dwellings to provide rainwater tanks for re-use in conjunction with other BASIX's requirements and Council guidelines. Where installed, rainwater tanks provide at-source stormwater management benefits.

Stormwater Flow Management (stormwater runoff conveyance and quality)

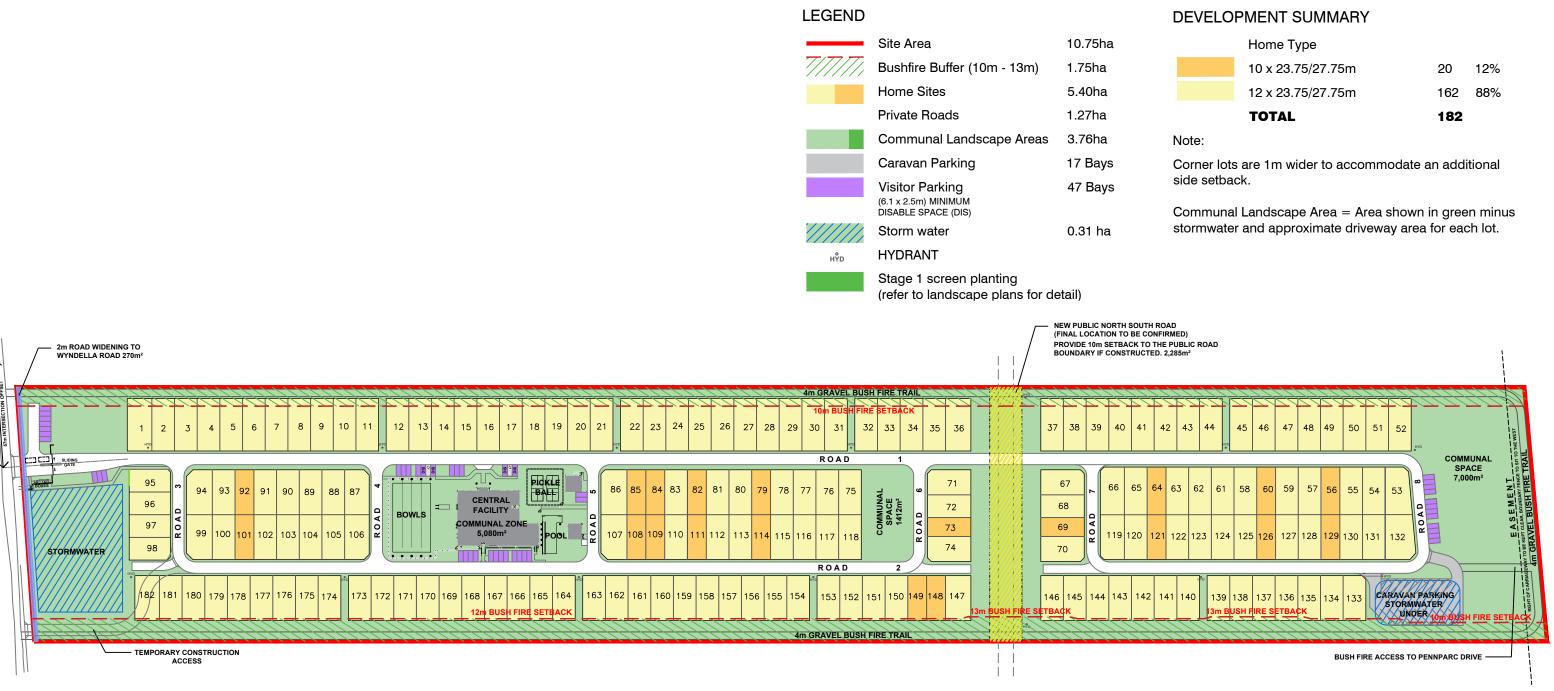
The strategy for management of stormwater runoff from the development is depicted Appendix B, and comprises:

- Capture of stormwater from lot and road reserve areas by a conventional pit and pipe drainage network located in the street or in inter-allotment drainage easements, where required.
- Conveyance of captured stormwater within the pit and pipe network to a GPT for primary treatment, Atlan StormFilter system for secondary treatment, and to the on-site detention basin(s) for tertiary controls.

MUSIC modelling has demonstrated that the proposed treatment devices will treat developed stormwater runoff to meet the requirements of Council's DCP, and on this basis, it is considered that no further water quality controls will be required within the proposed development. The individual lots will be required to provide Reuse Tanks in accordance with BASIXs and Council Guidelines; however, they do not form a part of the water quality modelling for the purpose of approvals.

Details of the proposed local drainage pipe, water quality and on-site detention network will be detailed at the time of Construction Certificate application to Council's standard and specifications.

As illustrated by Appendix B there is sufficient area within the developments footprint to provide stormwater drainage management measures to negate the impact of the proposed development.


7. REFERENCES

- Maitland City Council Development Control Plan
- Maitland City Council Manual of Engineering Standard (MOES).
- Ball J, Babister M, Nathan R, Weeks W, Weinmann E, Retallick M, Testoni I, (Editors) *Australian Rainfall and Runoff: A Guide to Flood Estimation*, ©Commonwelath of Australia (Geoscience Australia), 2019 (available online through arr.ga.gov.au).
- Coombes, P., and Roso, S (Editors), 2019 Runoff in Urban Areas, Book 9 in Australian Rainfall and Runoff – A Guide to Flood Estimation, © Commonwealth of Australia (Geoscience Australia), 2019 (available online through arr.ga.gov.au).
- Australian Rainfall and Runoff Data Hub (data.arr-software.org)
- Australian Runoff Quality, Engineers Australia, 2006.
- Using MUSIC in Sydney's Drinking Water Catchment, Published by WaterNSW, Parramatta, June 2019

Appendix A

Development Layout Plan

DISCLAIMER This plan was prepared for COMMERCIAL / FIT LTD dual for any other purpose. The dimensions, areas and total numbers of lots shown on this plan are subject to field survey and no reliance should be placed on the information on this plan for detailed subdivision design or f any commercial dealings involving the land. OPYRIGH I opyright in this drawing is the property of BDA Architecture and may not b tained, copied in whole or in part or used other for the specific uses, been prepared and

TOTAL	182	
12 x 23.75/27.75m	162	88%
10 x 23.75/27.75m	20	12%
Home Type		

50 Peerless Avenue Mermaid Beach QLD 4218 Phone: 07 5555 2600 Email: info@bdaarch.com.a ABN 77 081 702 301

Appendix B

Civil and Stormwater Management Plan

Development Site & Wyndella Road Upgrade

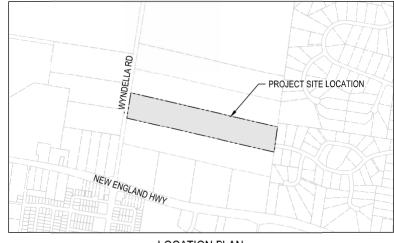
IFC

IFCR

REV

CIVIL & STORMWATER WORKS for 34 WYNDELLA ROAD LOCHIVAR NSW 2321

Prepared by


m m²

m³

L/s

ha

WALLACE INFRASTRUCTURE DESIGN PTY LTD

OCATION	PLAN
(NTS)	

GENERAL

SITE BOUNDARY

BUILDING FOOTPRINT

CLIENT:

LINETYPES & SYMBOLS

DRAWING NUMBER	DRAWING DESCRIPTION
C01.01	LEGEND, DRAWING SCHEDULE AND LOCATION PLAN
C02.01	GENERAL NOTES
C03.01	EROSION & SEDIMENTATION CONTROL PLAN
C03.02	EROSION & SEDIMENTATION CONTROL DETAILS
C04.01	GENERAL ARRANGEMENT PLAN
C04.02	BULK EARTHWORKS PLAN
C04.03	ROAD PLAN (1 OF 3)
C04.04	ROAD PLAN (2 OF 3)
C04.05	ROAD PLAN (3 OF 3)
C04.06	ROAD 1-8-2 AND 9 LONGITUDINAL SECTIONS (1 of 4)
C04.07	ROAD 1-8-2 AND 9 LONGITUDINAL SECTIONS (2 of 4)
C04.08	ROAD 1-8-2 AND 9 LONGITUDINAL SECTIONS (3 of 4)
C04.09	ROAD 1-8-2 AND 9 LONGITUDINAL SECTIONS (4 of 4)
C04.10	ROAD 6-2 AND 3 LONGITUDINAL SECTIONS (1 of 2)
C04.11	ROAD 6-2 AND 3 LONGITUDINAL SECTIONS (2 of 2)
C04.12	ROAD 4 AND 5 LONGITUDINAL SECTIONS
C04.13	NORTH-SOUTH ROAD AND VISITOR PARKING ACCESS DR. LONGITUDINAL SECTION
C05.01	EXISTING STORMWATER CATCHMENT PLAN
C05.02	DEVELOPED STORMWATER CATCHMENT PLAN
C05.03	STORM WATER MANAGEMENT PLAN (1 OF 3)
C05.04	STORM WATER MANAGEMENT PLAN (2 OF 3)
C05.05	STORM WATER MANAGEMENT PLAN (3 OF 3)
C06.01	SITE TYPICAL ROAD SECTIONS
C06.02	ON-SITE DETENTION BASIN No. 1 PLAN
C06.03	ON-SITE DETENTION BASIN No. 1 TYPICAL SECTIONS
C06.04	ON-SITE DETENTION TANK No. 2 PLAN
C06.05	ON-SITE DETENTION TANK No. 2 TYPICAL SECTIONS

ABBREVIATIONS

IL	INVERT LEVEL
0	INSPECTION OPENING
KIP	KERB INLET PIT
L	LENGTH
LP	LAMP POST (SURVEY)
MAX	MAXIMUM
MC	MASS CONCRETE
MH	MANHOLE
MIN	MINIMUM
MISC	MISCELLANEOUS
Ν	NORTH
NRV	NON RETURN VALVE
NTS	NOT TO SCALE
OD	OUTER DIAMETER
OF	OVERFLOW
OH	OVERHEAD
PP	POWER POLE
PPE	PERSONAL PROTECTIVE EQUIP.
PVC	POLYVINYLCHLORIDE
PV	PRESSURE VENT
PVP	PRESSURE VENT PIPE
QA	QUALITY ANALYSIS
QTY	QUANTITY
R	RADIUS
RC	REINFORCED CONCRETE
REV	REVISION
RL	REDUCED LEVEL
RW	RETAINING WALL
SFW	SEALED FLOOR WASTE
SL	SURFACE LEVEL
SMH	SEWER MANHOLE
SMV	SEWER MAIN VENT
SOD	SIDE OUTLET DRAIN
S/S	STAINLESS STEEL
STD	STANDARD

ISSUED FOR CONSTRUCTION

ISSUED FOR CLIENT REVIEW

SV	STOP VALVE
SW	STORMWATER
SWP	STORMWATER PIT
THK	THICKNESS
TJ	TRAVERSE JOINT
TOW	TOP OF WALL
TW	TRADE WASTE
TYP	TYPICAL
U/G	UNDERGROUND
UNO	UNLESS NOTED OTHERWISE
U/S	UPSTREAM
VC	VITRIFIED CLAY PIPE
VP	VENT PIPE
VR	VERTICAL RISER
W	WIDTH
WC	WATER CLOSET
WL	WATER LEVEL
WM	WATER METER
WS	WASTE STACK
UNITS	
mm	MILLIMETRES
cm	CENTIMETRES

METRES SQUARE METRES CUBIC METRES LITRES PER SECOND HECTARES

CADASTRAL BOUNDARY EASEMENT BOUNDARY EXISTING FEATURES CONTOURS STORMWATER PIPE STORMWATER PIT ELECTRICAL CABLE - U/G ELECTRICAL CABLE - O/H EXISTING SEWER PIPE EXISTING WATER EXISTING WATER (HYDRANT) EXISTING WATER (STOP VALVE) EXISTING TELECOM COMMUNICATIONS PIT

CONTOURS		COMMUNICATIONS PI
STORMWATER PIPE		GAS
STORMWATER PIT		ELECTRICAL CABLE -
ELECTRICAL CABLE - U/G	EE-	ELECTRICAL CABLE -
ELECTRICAL CABLE - O/H	OHE	REDUNDANT
EXISTING SEWER PIPE	SS-	PROPOSED - EROSIO
EXISTING WATER	WW-	SITE EXCLUSION FEN
EXISTING WATER (HYDRANT)	•	SEDIMENT FENCE
EXISTING WATER (STOP VALVE)	Х	DIVERSION DRAIN
EXISTING TELECOM	OFC	STABLISED SITE ACC
COMMUNICATIONS PIT		MATERIAL STOCKPILI
EXISTING GAS		SLOPE DIRECTION
EXISTING BUILDING		GEOTEXTILE INLET F
TREES / SHRUBS	0 🚯 🏶	MESH AND GRAVEL IN
PROPOSED - BUILDING (INDICATI	VE ONLY)	SANDBAG / HAY BALE
DWELLING NUMBER	UNIT 01	PROPOSED CONTOU
FINISHED FLOOR LEVEL	FFL 5.00	MAJOR CONTOUR INT

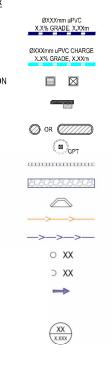
SEWER	s s
WATER	w
COMMUNICATIONS	TT
COMMUNICATIONS - OPTIC FIBRE	0FC
COMMUNICATIONS PIT	
GAS	G G
ELECTRICAL CABLE - U/G	—— E —— E ——
ELECTRICAL CABLE - O/H	OHE OHE
REDUNDANT	$\cdot X \cdot X \cdot X \cdot X \cdot X \cdot X \cdot X$
PROPOSED - EROSION AND SEDIM	IENT CONTROL
SITE EXCLUSION FENCE	[X] [X]
SEDIMENT FENCE	-0
DIVERSION DRAIN	_>_>
STABLISED SITE ACCESS	50505.55
MATERIAL STOCKPILE	· / / / / / / / / / / / / / / / / / / /
SLOPE DIRECTION	>
GEOTEXTILE INLET FILTER	
MESH AND GRAVEL INLET FILTER	Constant of the second se
SANDBAG / HAY BALES	STATUTE OF
PROPOSED CONTOURS	
MAJOR CONTOUR INTERVAL	

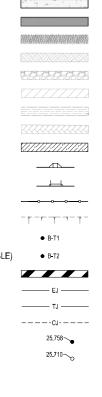
MINOR CONTOUR INTERVAL

PROPOSED - UTILITIES

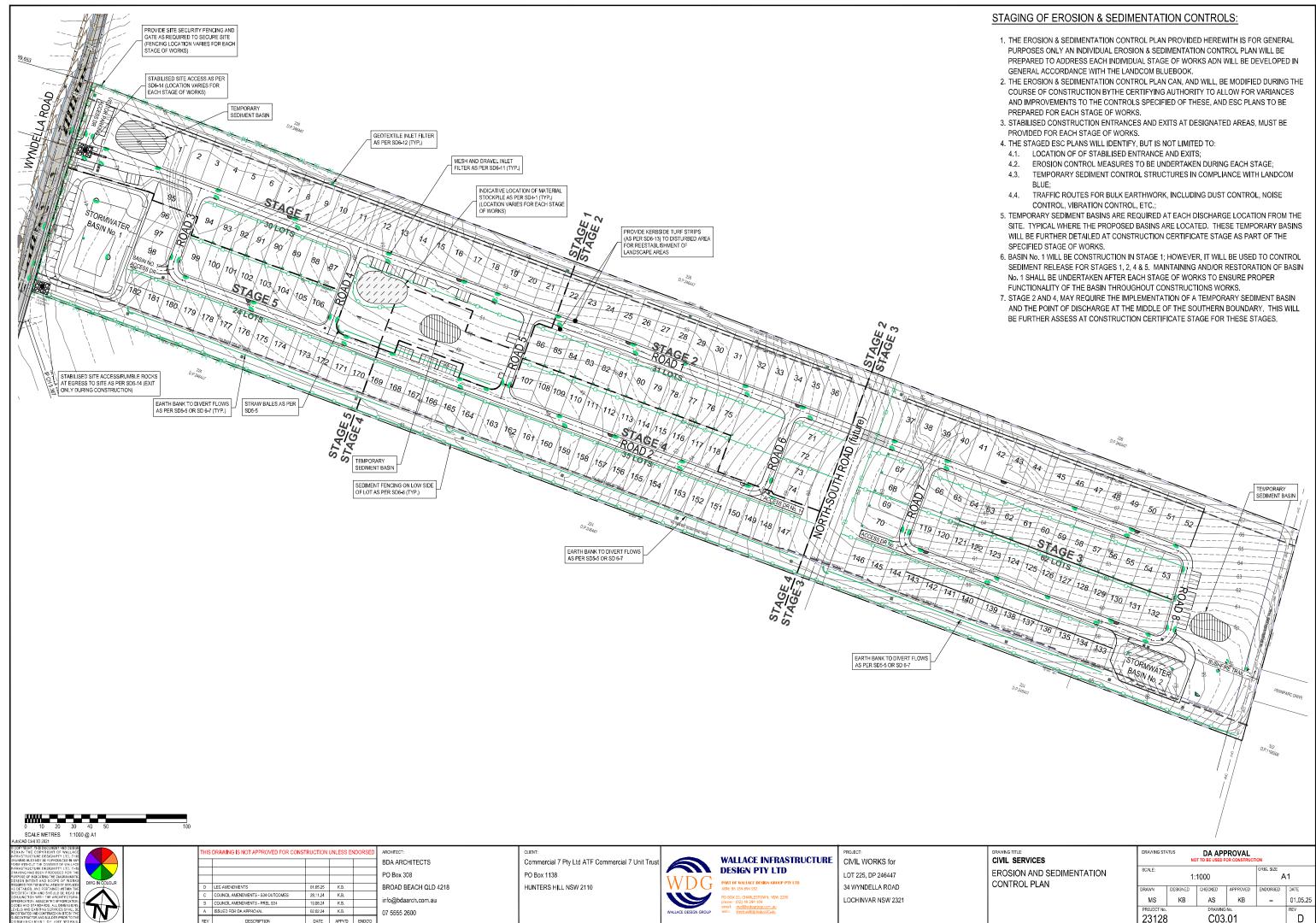
SW PIPE (INCL. DIA/GRADE/LENGTH) SW PIPE - CHARGED (INCL. DIA/GRADE/LENGTH) SW PIT - GRATED / JUNCTION SW - KERB INLET PIT (INCLUDING LINTEL) RAINWATER/REUSE TANK GROSS POLLUTANT TRAP GRATED DRAIN **INFILTRATION TRENCH** HEADWALL SUBSOIL SW SWALE PIPE RISER PIPE DROPPER OVERLAND FLOW PATH SW PIT NUMBER SW CATCHMENT (NUMBER / AREA IN ha)


DRAWING IS NOT APPROVED FOR CONSTRUCTION UNLESS END ARCHITECT BDA ARCHITECTS PO Box 308 01.05.25 K.B. LEC AMENDMENT BROAD BEACH QLD 4218 COUNCIL AMENDMENTS - \$34 OUTCOMES 28.11.24 K.B. info@bdaarch.com.au COUNCIL AMENDMENTS - PREL S34 19.08.24 K.B. A ISSUED FOR DA APPROVAL 02.02.24 K.B. 07 5555 2600 DESCRIPTION DATE APPVID ENDO

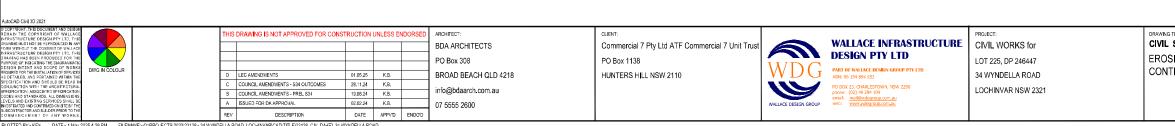

Commercial 7 Pty Ltd ATF Commercial 7 Unit Tru PO Box 1138 HUNTERS HILL NSW 2110

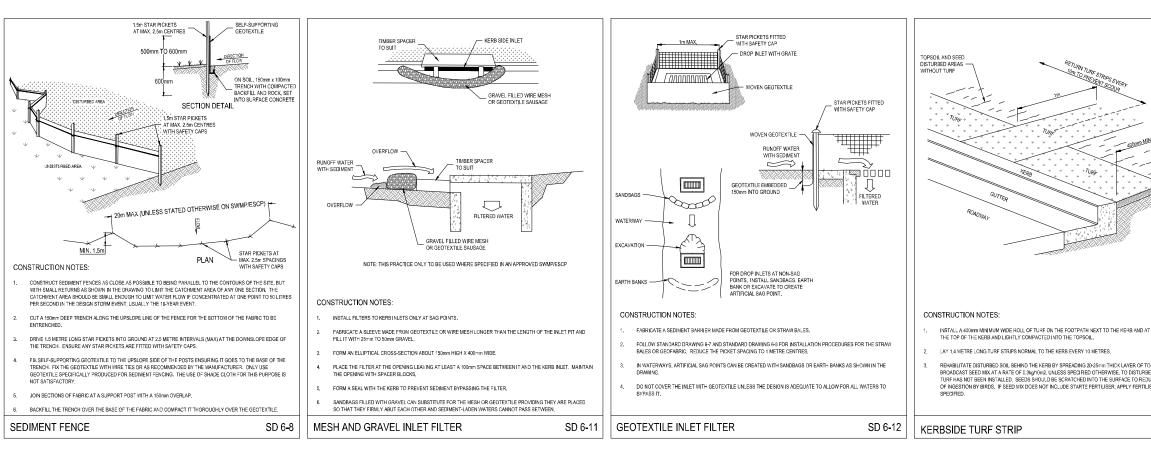

INFRASTRUCTURE	PROJECT: CIVIL WORKS for
TY LTD	LOT 225, DP 246447
SIGN GROUP PTY LTD	34 WYNDELLA ROAD
OWN, NSW 2290 9 Io.com.au	LOCHINVAR NSW 2321

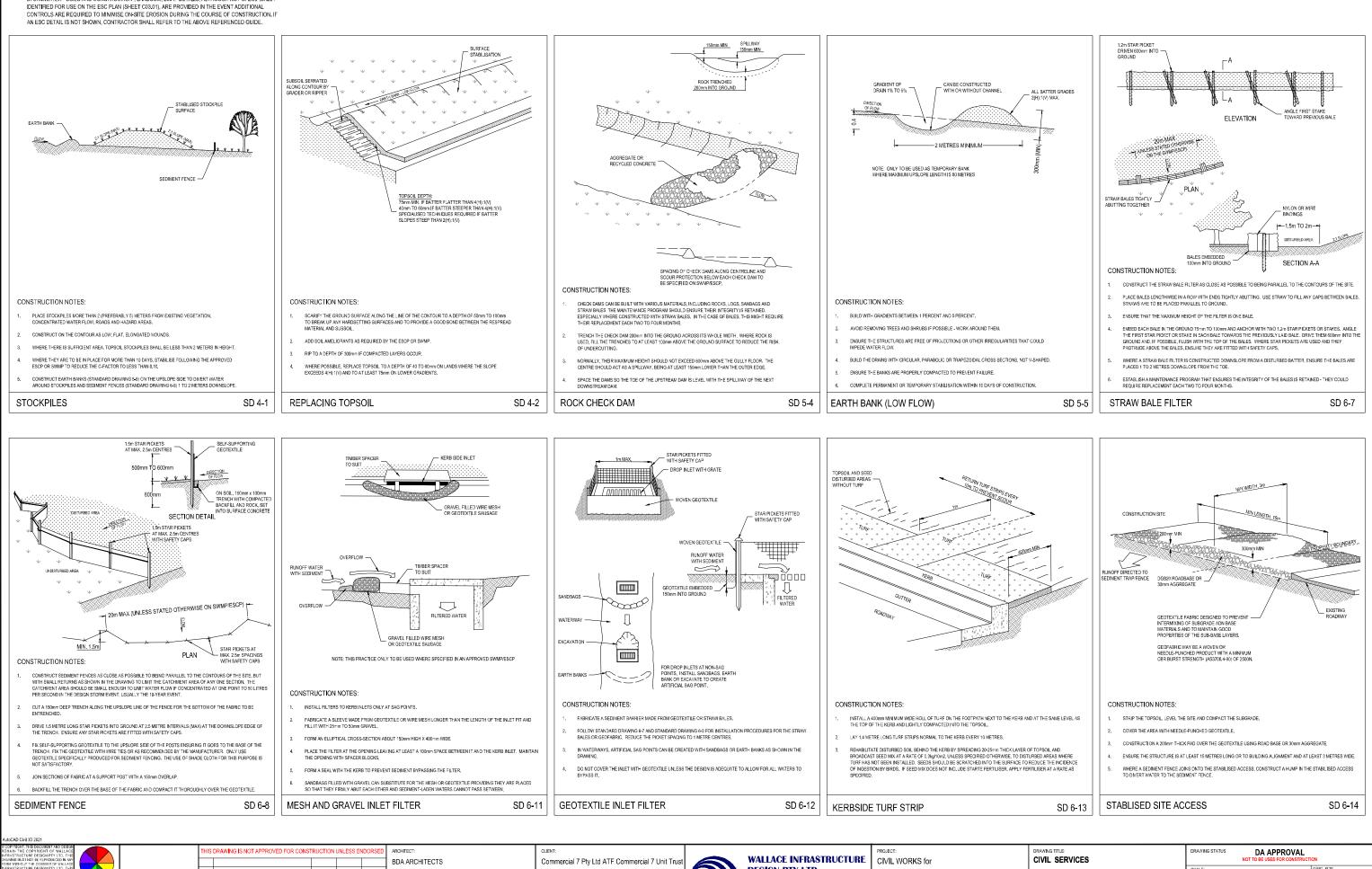
drawi CIVI LEG AND



PROPOSED - CIVIL
CONCRETE
ASPHALTIC CONCRETE
SAND
EARTH
RIP RAP
BUILDING / STRUCTURES
TIMBER
BLOCK PAVERS
RETAINING WALL
KERB RAMP
VEHICULAR CROSSING
FENCE
BATTER
BOLLARD - TYPE 1 (FIXED)
BOLLARD - TYPE 2 (REMOVAB
LINEMARKING - CHEVRON
EXPANSION JOINT
TRAVERSE JOINT
CONTROL JOINT
FINISHED GRADE LEVELS
EXISTING GRADE LEVELS

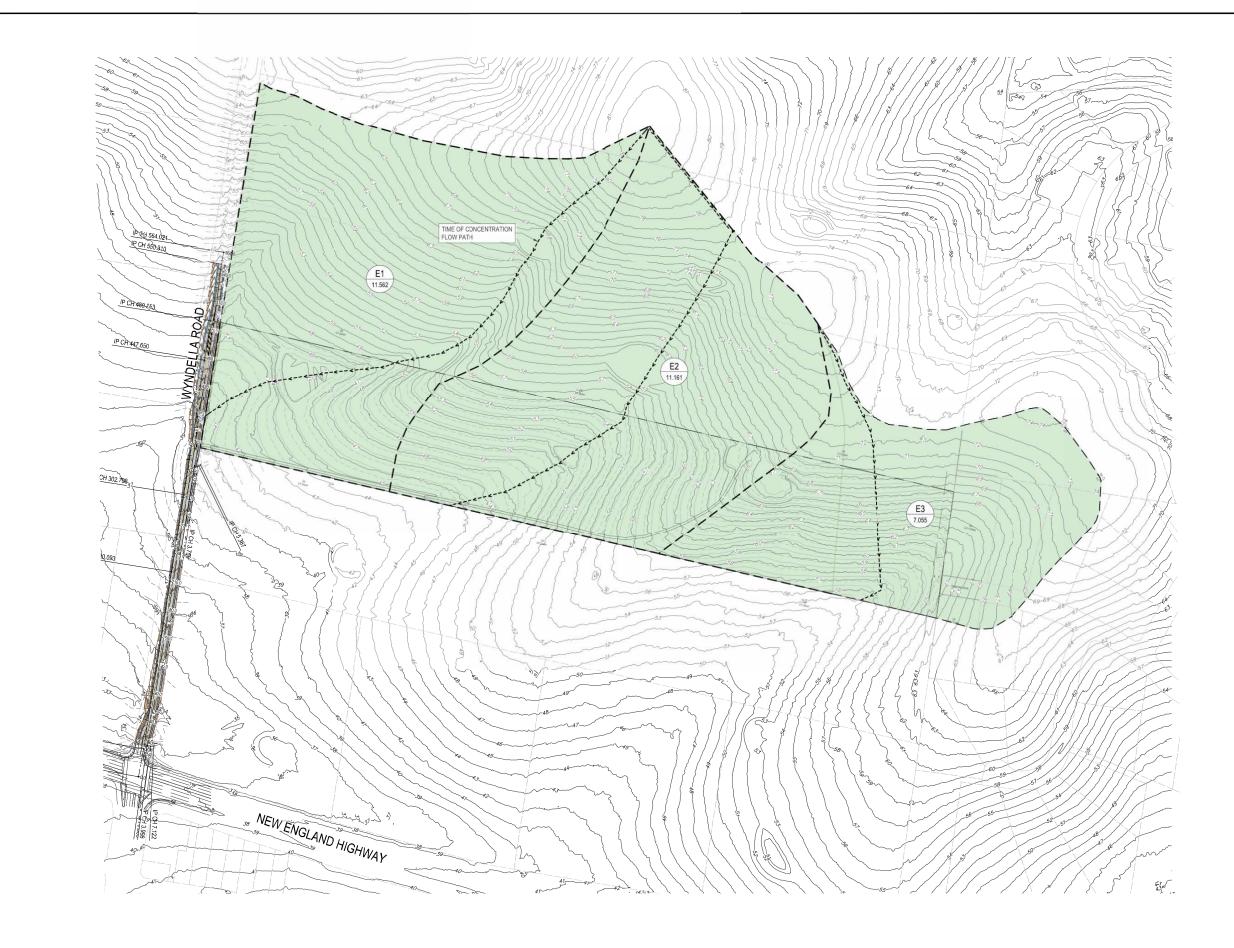


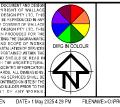

	DRAWING STATUS DA APPROVAL NOT TO BE USED FOR CONSTRUCTION					
GEND, DRAWING SCHEDULE ID LOCATION PLAN	SCALE: N.T.S.			ORIG. SIZE A1		
	DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE
	MS	KB	AS	КВ	-	01.05.25
	PROJECT No.		DRAWING	No.		REV
	23128		C01	.01		D



REV

DESCRIPTION





ALL EROSION & SEDIMENTATION CONTROL (ESC) PLAN DETAILS SHOWN ARE FROM "MANAGING URBAN STORMWATER - SOILS AND CONSTRUCTION", LANDCOM, 2004. DETAILS, ALTHOUGH NOT SPECIFICALLY

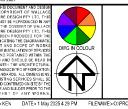
KG TITLE: L SERVICES	DRAWING STATUS DA APPROVAL NOT TO BE USED FOR CONSTRUCTION					
SION AND SEDIMENTATION	SCALE: N.T.S.			ORIG. SIZE A1		
	DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE
	MS	KB	AS	KB	-	01.05.25
	PROJECT No.		DRAWING	No.		REV
	23128		C03	.02		D

REV

IS DRAWING IS NOT APPROVED FOR CONSTRUCTION UNLESS ENDO ARCHITECT: BDA ARCHITECTS PO Box 308 BROAD BEACH QLD 4218 LEC AMENDMENTS 01.05.25 K.B. C COUNCIL AMENDMENTS - S34 OUTCOMES B COUNCIL AMENDMENTS - PREL S34 28.11.24 K.B. 19.08.24 K.B. info@bdaarch.com.au A ISSUED FOR DA APPROVAL 02.02.24 K.B. 07 5555 2600 DATE APPV'D ENDO'D DESCRIPTION

Commercial 7 Pty Ltd ATF Commercial 7 Unit Trus PO Box 1138 HUNTERS HILL NSW 2110

CLIENT:

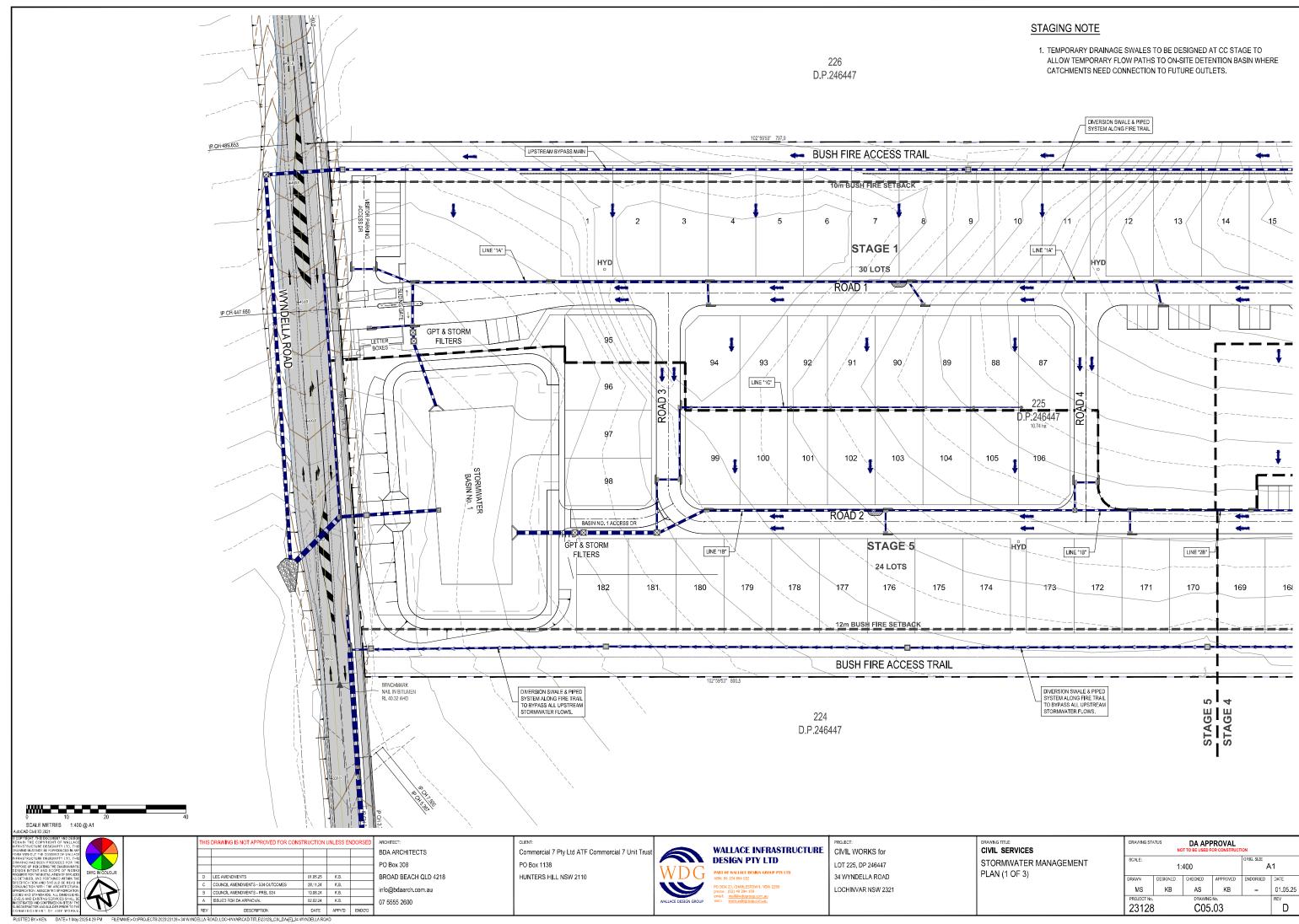


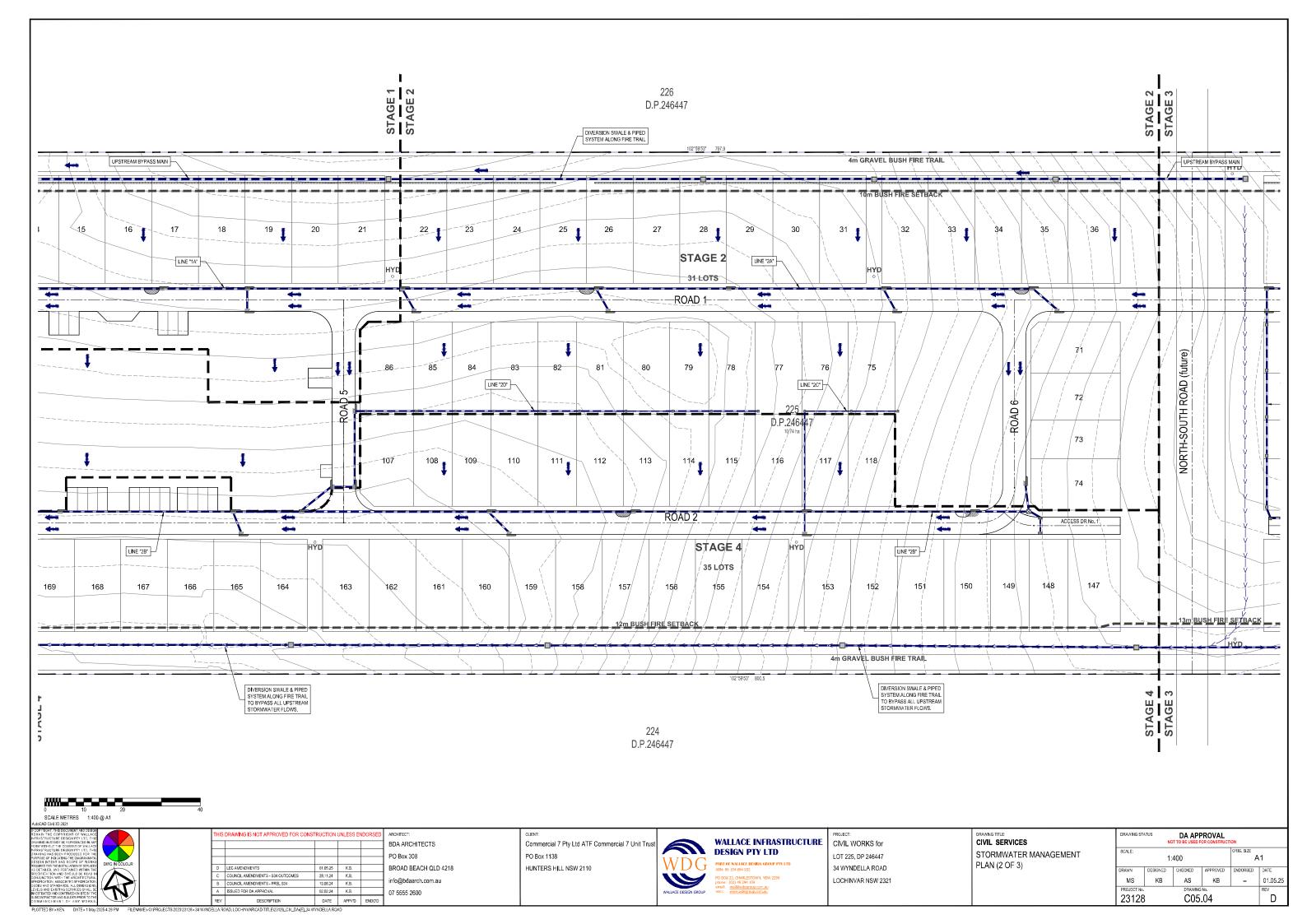
PROJECT: CIVIL WORKS for LOT 225, DP 246447 PART OF WALLACE DESIGN GROUP PTY LTD ABN: 96 154 894 952 34 WYNDELLA ROAD LOCHINVAR NSW 2321 DRAWING TITLE: EXISTING STORMWATER CATCHMENT PLAN

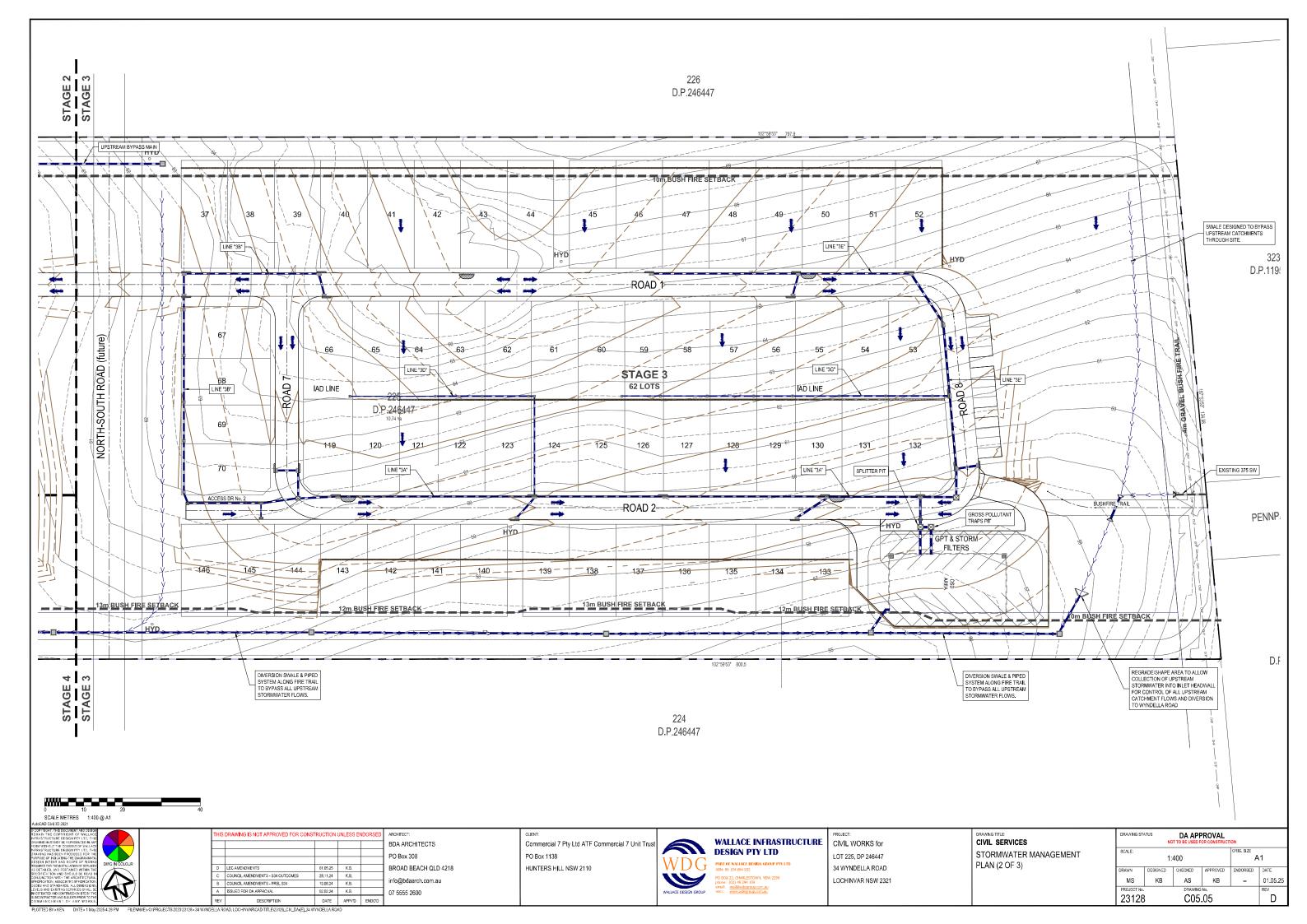
DRAWING STATUS DA APPROVAL NOT TO BE USED FOR CONSTRUCTION						
SCALE: 0RIG. SIZE A1					.1	
DRAWN	WN DESIGNED CHECKED APPROVED EI		ENDORSED	DATE		
MS	KB	AS	KB	-	01.05.25	
PROJECT No. DRAWING No.			REV			
23128	28 C05.01			D		

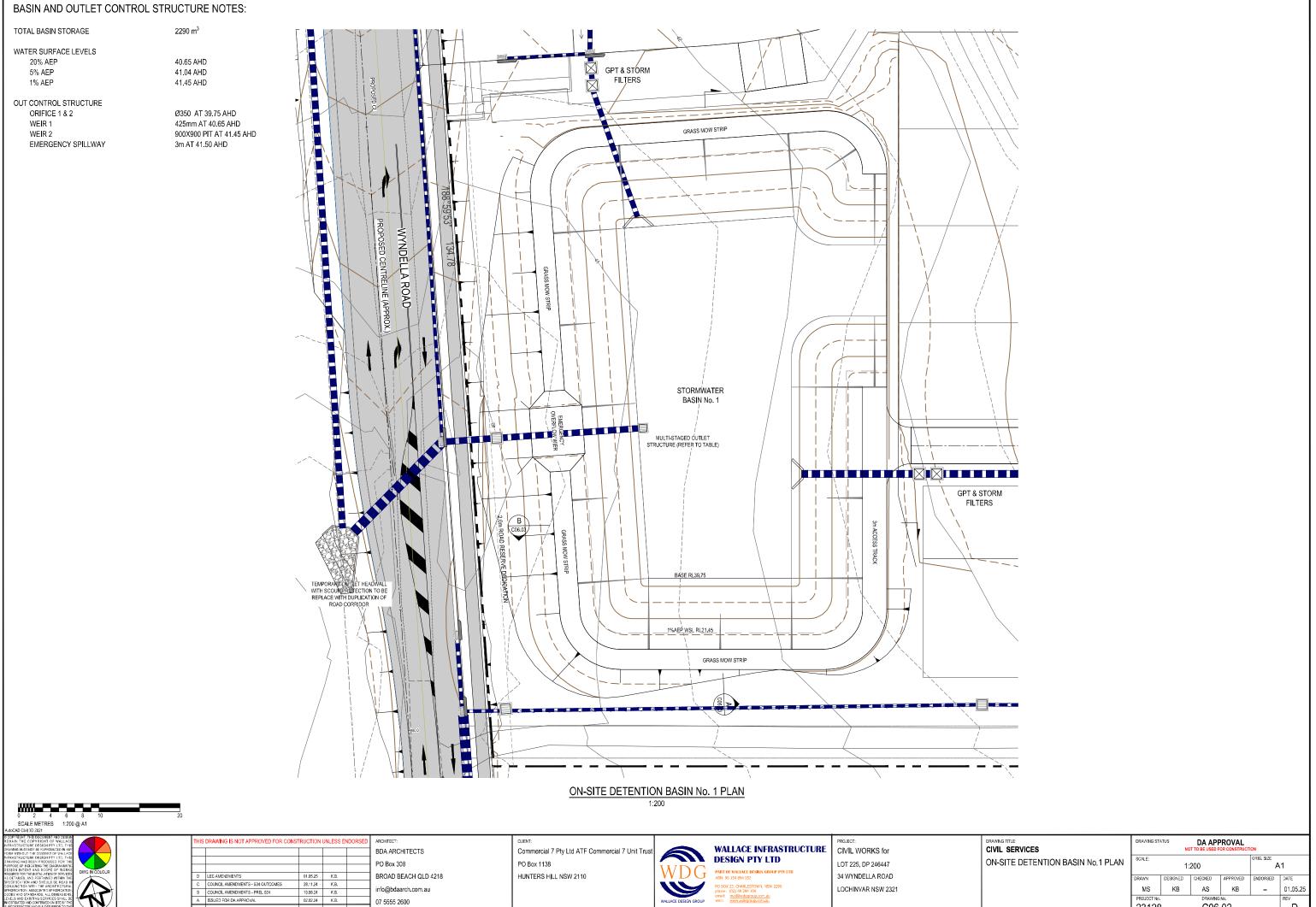
	THIS	DRAWING IS NOT APPROVED FOR CON	ARCHITECT:			
						BDA ARCHITECTS
						PO Box 308
	D	LEC AMENDMENTS	01.05.25	K.B.		BROAD BEACH QLD 4218
	С	COUNCIL AMENDMENTS - S34 OUTCOMES	28.11.24	К.В.		
	в	COUNCIL AMENDMENTS - PREL \$34	19.08.24	K.B.		info@bdaarch.com.au
	Α	ISSUED FOR DA APPROVAL	02.02.24	К.В.		07 5555 2600
	REV	DESCRIPTION	DATE	APPV'D	ENDO'D	
WYNE	ELLA RO	DAD, LOCHINVARICAD TITLE 23128_CIV_DA-[E]_34	WYNDELLA RO	٨D		

Commercial 7 Pty Ltd ATF Commercial 7 Unit Trus PO Box 1138 HUNTERS HILL NSW 2110

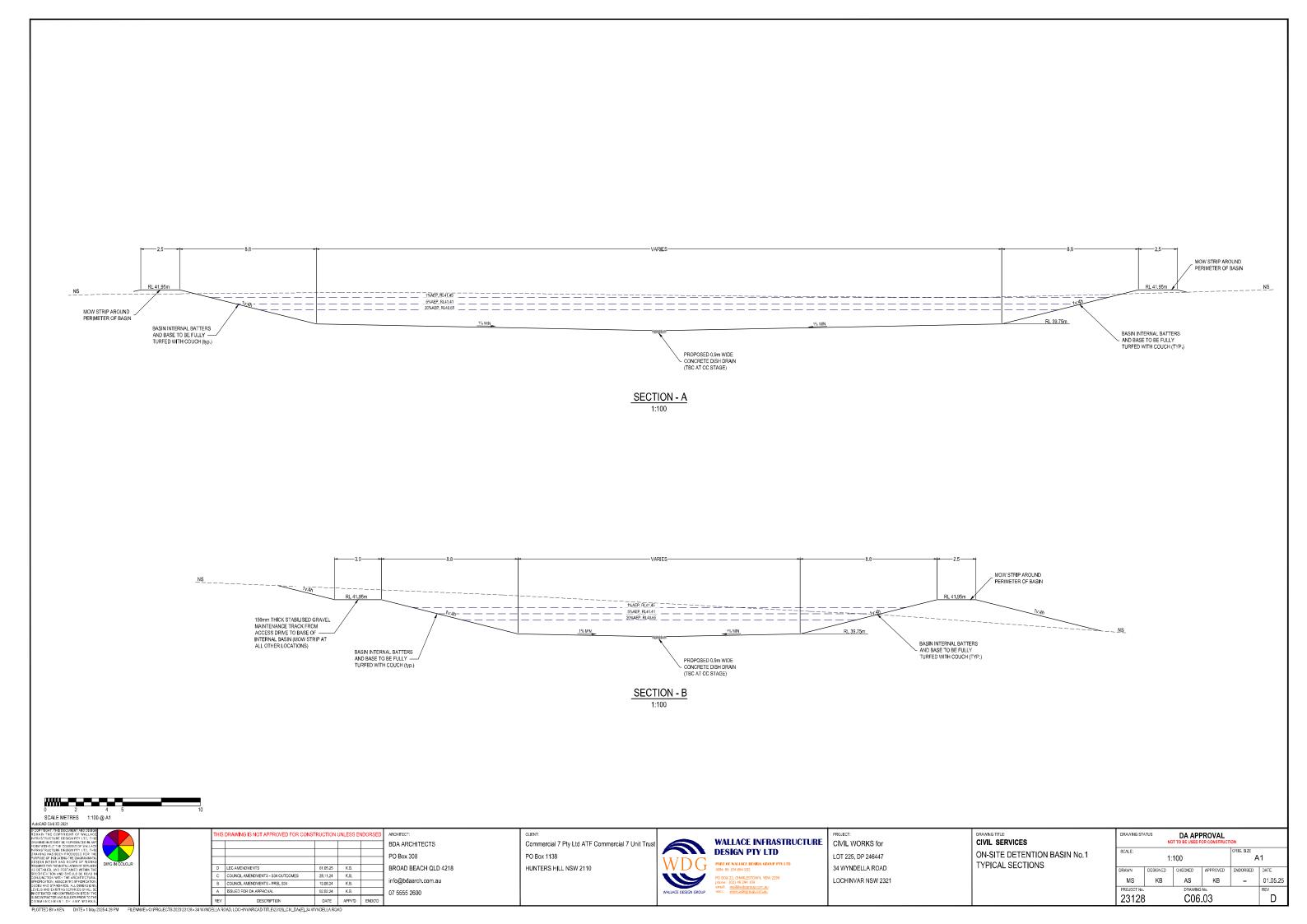

CLIENT:

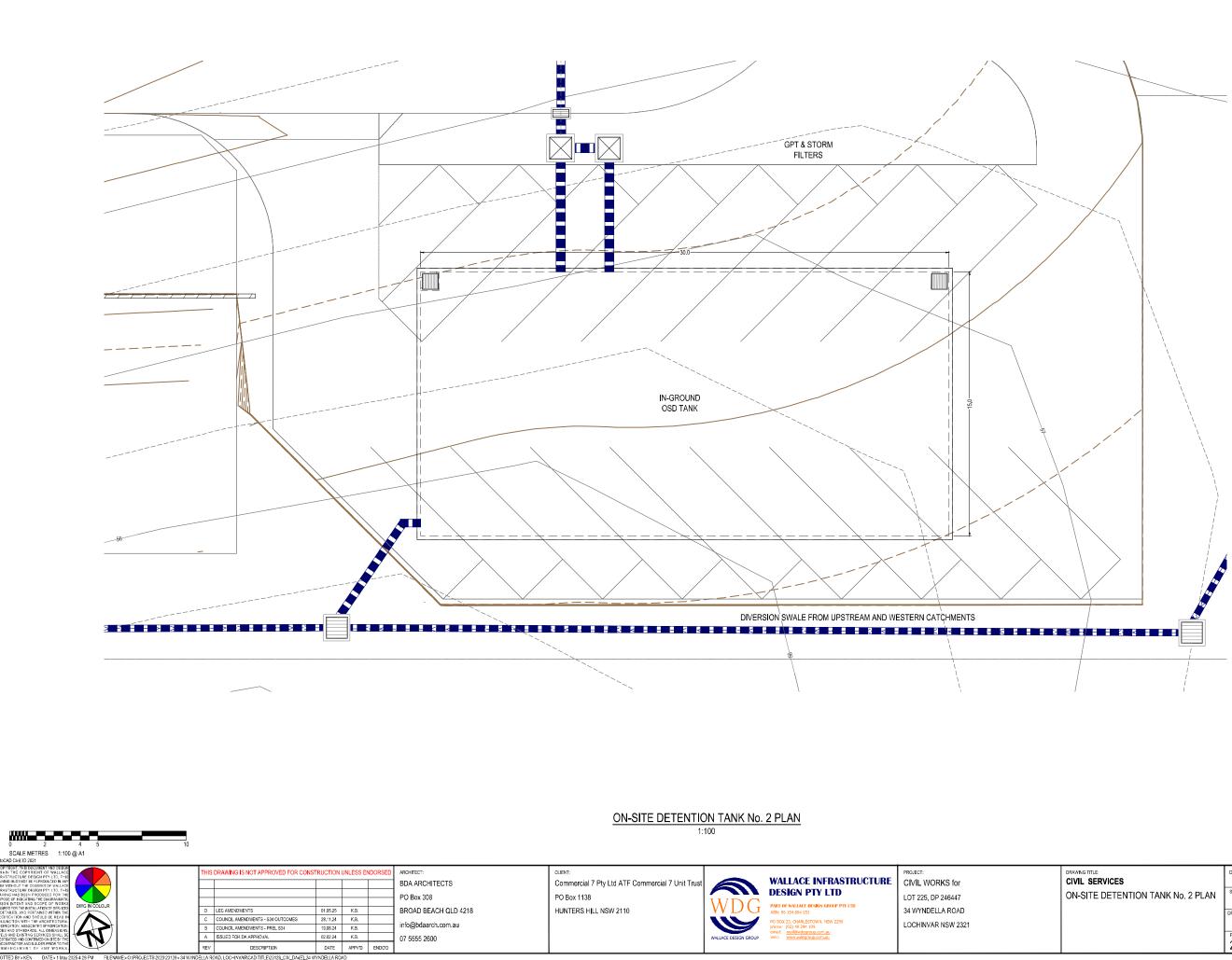



WALLACE INFRASTRUCTURE DESIGN PTY LTD PART OF WALLACE DESIGN GROUP PTY LTD ABN: 96 154 894 952 PO BOX 23, CHARLESTOWN, NSW 2290 phone: (02) 49 294 109 email: mail@wdegroup.com.au web:

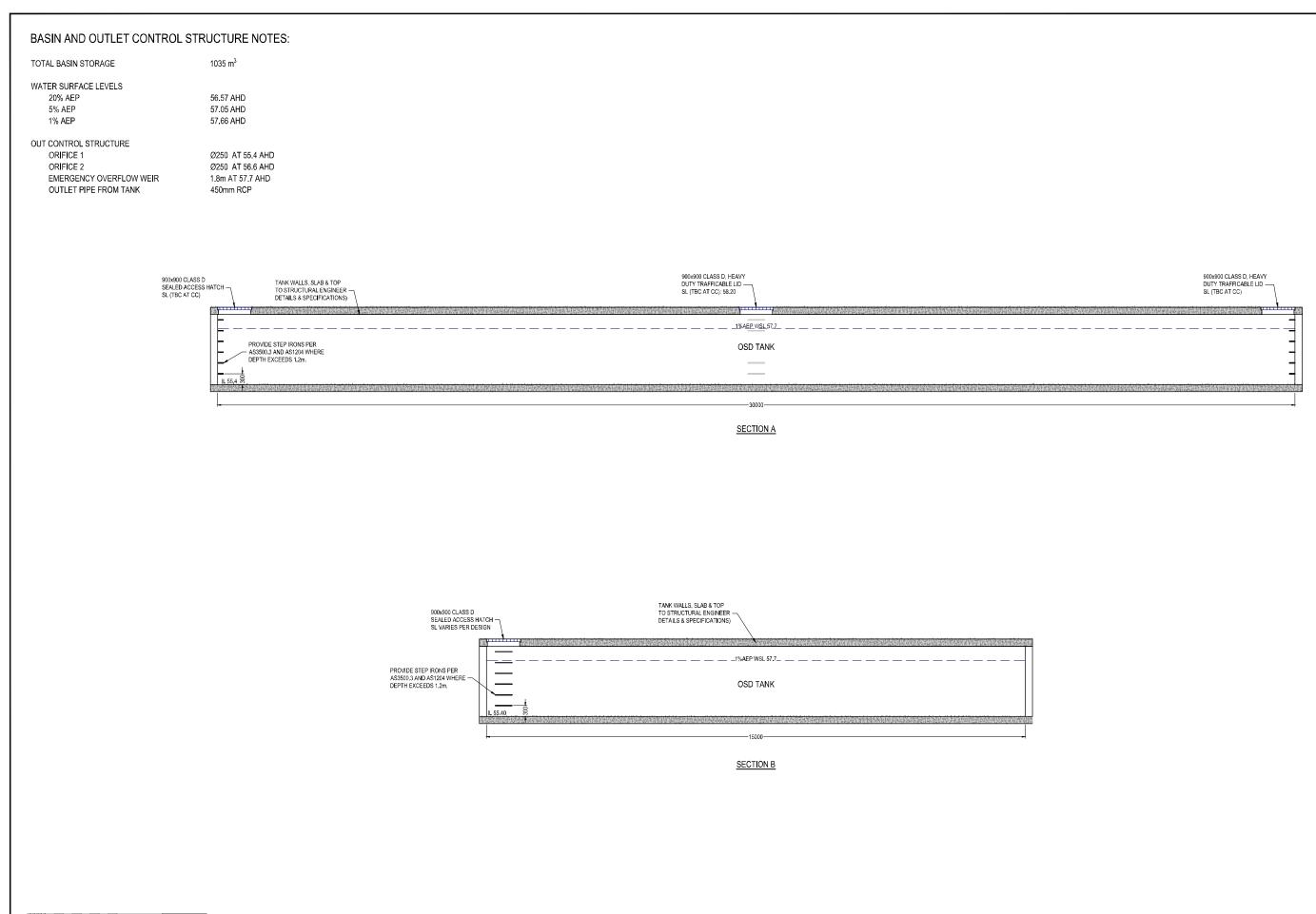

PROJECT: CIVIL WORKS for LOT 225, DP 246447 34 WYNDELLA ROAD LOCHINVAR NSW 2321 DRAWING TITLE: DEVELOPED STORMWATER CATCHMENT PLAN

DRAWING ST/		DA APPROVAL NOT TO BE USED FOR CONSTRUCTION				
SCALE:	1:	2000		ORIG, SIZE		
DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE	
MS	KB	AS	KB	-	01.05.25	
PROJECT NO. 23128		DRAWING			D	


REV


DESCRIPTION

TITLE/23128_CIV_DA_[E]_34 WYNDELLA RO/


DATE APPV'D ENDO'D

	NOT TO BE USED FOR CONSTRUCTION					
SITE DETENTION BASIN No.1 PLAN	SCALE:	1:	200		ORIG. SIZE	.1
	DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE
	MS	KB	AS	KB	-	01.05.25
	PROJECT No.		DRAWING	No.		REV
	23128		C06	02		D

WING TITLE: VIL SERVICES	DRAWING STA			ROVAL	ION	
N-SITE DETENTION TANK No. 2 PLAN	SCALE:	scale: 1:100			ORIG, SIZE	
	DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE
	MS	KB	AS	KB	-	01.05.25
	PROJECT No.		DRAWING	No.		REV
	23128		C06	.04		D

0	1	2			
SCALE M	ETRES	1:50 @ A1			
utoCAD Civil 3D 20	21				
COPYRIGHT THIS D EMAIN THE COPYI FRASTRUCTURE D DRM WITHOUT THIE C FRASTRUCTURE D RAWING MAS INDI BI RAWING HAS BEEN ROSOLE OF THE RAST SO DETAILED, AND PECHTO FOR THE RAST SO DETAILED, AND PECHTO RECIPCATION AND DES AND STANDAS DES AND STANDAS VILLES AND EXISTING VESTIGATED AND COM VESTIGATED AND COM VESTIGATED AND COM	RIGHT OF W. ESIGN PTY LT E REPRODUCE SSIGN PTY LT ESIGN PTY LT PRODUCED F 46 THE DIAGN O SCOPE OF TALLATION OF S RETAINED WIT THE ARCHTE SHOULD BE I THE ARCHTE SHOULD BE I THE ARCHTE SSERVICES S STRUCES S SIGNIOS ALL DIME S SERVICES S SIGNIOS ALL DIME S SERVICES S SIGNIOS ALL OWNER S SERVICES S SIGNIOS ALL OWNER S SERVICES S SIGNIOS STRUCTURE S SERVICES S SIGNIOS S SIGNIOS S S S S S S S S S S S S S S S S S S S	ALLACE D. THIS DI N MY ALLACE O. THIS OR THE WORKS ERVICES DWC WORKS DWC DWC NOTURAL ICATION, NSIONS, NALLS E EBY THE READ IN STOTHE	IN COLOUR		
LOTTED BY - KEN	DATE:	1 May 2025 4 29	PM FILEN	WME:- O:/PROJECTS/2023/	2

IS DRAWING IS NOT APPROVED FOR CONSTRUCTION UNLESS ENDO ARCHITECT: BDA ARCHITECTS PO Box 308 01.05.25 K.B. BROAD BEACH QLD 4218 D LEC AMENDMENTS C COUNCIL AMENDMENTS - S34 OUTCOMES B COUNCIL AMENDMENTS - PREL S34 28.11.24 K.B. info@bdaarch.com.au 19.08.24 K.B. A ISSUED FOR DA APPROVAL 02.02.24 K.B. 07 5555 2600 REV DATE APPV'D ENDO'D DESCRIPTION YNDELLA ROAD, LOC VARICAD TITLE 23128_CIV_DA [E]_34 WYNDELLA ROA

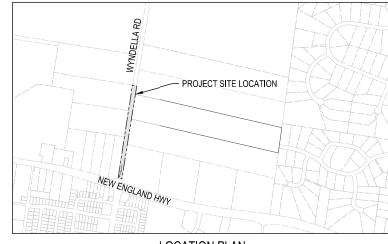
Commercial 7 Pty Ltd ATF Commercial 7 Unit Tru PO Box 1138 HUNTERS HILL NSW 2110

CLIENT:

CIVIL WORKS for LOT 225, DP 246447 34 WYNDELLA ROAD LOCHINVAR NSW 2321

PROJECT:

SERVICES	DRAWING ST/			ROVAL
ITE DETENTION TANK No. 2	SCALE:	1:	50	
SERVICES	DRAWN	DESIGNED	CHECKED	APPROVED
SERVICES ITE DETENTION TANK No. 2	MS	KB	AS	KB
	PROJECT No.		DRAWING	No.
	23128	}	C06	.05


DA APPROVAL O BE USED FOR CONSTRUCTION					
		ORIG. SIZE			
		A	.1		
HECKED	APPROVED	ENDORSED	DATE		
AS	KB	-	01.05.25		
DRAWING	No.		REV		
C06.	.05		D		

ROAD IMPROVEMENT for WYNDELLA ROAD NEW ENGLAND HWY TO LOT 225, DP246447 **LOCHIVAR NSW 2321**

Prepared by

WALLACE INFRASTRUCTURE DESIGN PTY LTD

LOCATION PLAN (NTS)

DRAWING DESCRIPTION
LEGEND, DRAWING SCHEDULE AND LOCATION PLAN
GENERAL NOTES
GENERAL ARRANGEMENT PLAN
EROSION AND SEDIMENTATION CONTROL PLAN
EROSION AND SEDIMENTATION CONTROL DETAILS
WYNDELLA ROAD DETAIL PLAN AND LONGITUDINAL SECTION
WYNDELLA ROAD DETAIL PLAN AND LONGITUDINAL SECTION
WYNDELLA ROAD CROSS-SECTIONS
LOT 223 & LOT 224 DRIVEWAY AND BUSHFIRE ACCESS LONGITUDINAL SECTIONS
STORMWATER CATCHMENT PLAN
STORMWATER MANAGEMENT PLAN
STORMWATER LONGITUDINAL SECTIONS
TYPICAL ROAD SECTIONS
TYPICAL CULVERT SECTIONS AND DETAILS

ABBREVIATIONS

FW FLOOR WASTE GA GENERAL ARRANGEMENT GI GALVANISED IRON GFL GARAGE FINISHED LEVEL IC INSPECTION CHAMBER ID INSIDE DIAMETER

IL	INVERT LEVEL
0	INSPECTION OPENING
KIP	KERB INLET PIT
L	LENGTH
LP	LAMP POST (SURVEY)
MAX	MAXIMUM
MC	MASS CONCRETE
MH	MANHOLE
MIN	MINIMUM
MISC	MISCELLANEOUS
Ν	NORTH
NRV	NON RETURN VALVE
NTS	NOT TO SCALE
OD	OUTER DIAMETER
OF	OVERFLOW
OH	OVERHEAD
PP	POWER POLE
PPE	PERSONAL PROTECTIVE EQUIP.
PVC	POLYVINYLCHLORIDE
PV	PRESSURE VENT
PVP	PRESSURE VENT PIPE
QA	QUALITY ANALYSIS
QTY	QUANTITY
R	RADIUS
RC	REINFORCED CONCRETE
REV	REVISION
RL	REDUCED LEVEL
RW	RETAINING WALL
SFW	SEALED FLOOR WASTE
SL	SURFACE LEVEL
SMH	SEWER MANHOLE
SMV	SEWER MAIN VENT
SOD	SIDE OUTLET DRAIN
S/S	STAINLESS STEEL
STD	STANDARD

ISSUED FOR CONSTRUCTION

ISSUED FOR CLIENT REVIEW

IFC

IFCR

SV	STOP VALVE
SW	STORMWATER
SWP	STORMWATER PIT
THK	THICKNESS
ТJ	TRAVERSE JOINT
TOW	TOP OF WALL
TW	TRADE WASTE
TYP	TYPICAL
U/G	UNDERGROUND
UNO	UNLESS NOTED OTHERWISE
U/S	UPSTREAM
VC	VITRIFIED CLAY PIPE
VP	VENT PIPE
VR	VERTICAL RISER
W	WIDTH
WC	WATER CLOSET
WL	WATER LEVEL
WM	WATER METER
WS	WASTE STACK
UNITS	
mm	MILLIMETRES
cm	CENTIMETRES
m	METRES
m ²	SQUARE METRES
m ³	CUBIC METRES
L/s	LITRES PER SECOND

HECTARES

ha

SITE BOUNDARY	
CADASTRAL BOUNDARY	
EASEMENT BOUNDARY	_
EXISTING FEATURES	
CONTOURS	
STORMWATER PIPE	-
STORMWATER PIT	

LINETYPES & SYMBOLS

GENERAL

CONTOURS			
STORMWATER PIPE			
STORMWATER PIT			
ELECTRICAL CABLE - U/G	E E -		
ELECTRICAL CABLE - O/H	OHE		
EXISTING SEWER PIPE			
EXISTING WATER	w		
EXISTING WATER (HYDRANT)	•		
EXISTING WATER (STOP VALVE)	Х		
EXISTING TELECOM	OFC		
COMMUNICATIONS PIT			
EXISTING GAS	GG-		
EXISTING BUILDING			
TREES / SHRUBS	0 🤁 🏶 🔘		
PROPOSED - BUILDING (INDICATIVE ONLY)			
DWELLING NUMBER	UNIT 01		
FINISHED FLOOR LEVEL	FFL 5.00		

PROPOSED - UTILITIES	6

NOI OULD OTILITILO	
SEWER	ss
WATER	w
COMMUNICATIONS	TT
COMMUNICATIONS - OPTIC FIBRE	OFC OFC
COMMUNICATIONS PIT	
GAS	G G
ELECTRICAL CABLE - U/G	—— Е —— Е ——-
ELECTRICAL CABLE - O/H	OHE OHE
REDUNDANT	· X · X · X · X · X · X · X
PROPOSED - EROSION AND SEDIM	IENT CONTROL
SITE EXCLUSION FENCE	[X] [X]
SEDIMENT FENCE	
DIVERSION DRAIN	_>_>_>
STABLISED SITE ACCESS	668886
MATERIAL STOCKPILE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SLOPE DIRECTION	>
GEOTEXTILE INLET FILTER	\boxtimes
MESH AND GRAVEL INLET FILTER	
SANDBAG / HAY BALES	Canal Contraction
PROPOSED CONTOURS	

— T ———	SW PIPE - CHARGED (INCL. DIA/GRADE/LENGTH)
- OFC	SW PIT - GRATED / JUNCTIC
- G	SW - KERB INLET PIT (INCLUDING LINTEL)
— E ——-	RAINWATER/REUSE TANK
OHE	GROSS POLLUTANT TRAP
XXXX	GRATED DRAIN
ROL	INFILTRATION TRENCH
— [X] —	HEADWALL
	SUBSOIL
_>	SW SWALE
	PIPE RISER
	PIPE DROPPER
>	OVERLAND FLOW PATH
	SW PIT NUMBER
	SW CATCHMENT (NUMBER / AREA IN ha)

SW PIPE

(INCL. DIA/GRADE/LENGTH)

THIS	DRAWING IS NOT APPROVED FOR CONST	RUCTION	UNLESS EN	NDORSED	ARCHITECT:	CLIEM
					BDA ARCHITECTS	Cor
					PO Box 308	PO
					BROAD BEACH QLD 4218	HUN
В	RD LEVEL / NOTE AMENDMENTS	05.05.25	K.B.		info@bdaarch.com.au	
А	PRELIMINARY ISSUE	01.05.25	К.В.		07 5555 2600	
REV	DESCRIPTION	DATE	APPV'D	ENDO'D		
LAR	DAD OCHINVAR\CAD\TITLE\23128 CIV_PRELDESIG	WYNDELLA	ROAD (B)			

ommercial 7 Pty Ltd ATF Commercial 7 Unit Tru O Box 1138 UNTERS HILL NSW 2110

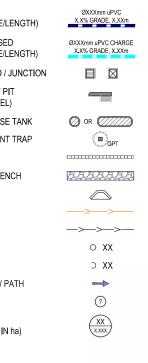
BUILDING FOOTPRINT

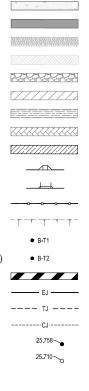
WALLACE INFRASTRUCTURE	PF R
DESIGN PTY LTD	L
PART OF WALLACE DESIGN GROUP PTY LTD ABN: 96 154 894 952	3
PO BOX 23, CHARLESTOWN, NSW 2290 phone: (02) 49 294 109 email: mail@wdegroup.com.au	L

MAJOR CONTOUR INTERVAL

MINOR CONTOUR INTERVAL

ROAD IMPROVEMENTS for WYNDELLA ROAD CIV LOT 225, DP 246447 LE AN 34 WYNDELLA ROAD LOCHINVAR NSW 2321


KENNETH D BOYER	2
(BE Civil) MIE Aust CPEng	


Chartered Professional Engine Membership No. 4404352

Registered on the NER in the area(s of practice of CIVIL

PROPOSED - STORMWATER

PROPOSED - CIVIL CONCRETE ASPHALTIC CONCRETE SAND FARTH RIP RAP **BUILDING / STRUCTURES** TIMBER BLOCK PAVERS RETAINING WALL KERB RAMP VEHICULAR CROSSING FENCE BATTER BOLLARD - TYPE 1 (FIXED) BOLLARD - TYPE 2 (REMOVABLE) LINEMARKING - CHEVRON EXPANSION JOINT TRAVERSE JOINT CONTROL JOINT FINISHED GRADE LEVELS EXISTING GRADE LEVELS

	DRAWING STATUS PRELIMINARY DESIGN					
VIL ROAD & SW PLANS GEND, DRAWING SCHEDULE ND LOCATION PLAN	SCALE:	N.	.T.S.		ORIG. SIZE	.1
ID LOCATION FLAN	DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE
	MS	KB	КВ	KB	-	05.05.25
	PROJECT No.		DRAWING	No.		REV
	23128		C01.	.01		В

GENERAL NOTES

- ALL CONSTRUCTION WORKS ARE TO BE CARRIED OUT IN ACCORDANCE WITH COUNCIL'S ENGINEERING REQUIREMENTS FOR DEVELOPMENTS
- ALL DIMENSIONS, EASEMENTS AND LOTS SUBJECT TO REGISTRATION OF DEPOSITED PLAN THESE DRAWINGS ARE TO BE READ IN CONJUNCTION WITH ALL ARCHITECTURAL AND CONSULTANT'S DRAWINGS AND SPECIFICATIONS, AND OTHER WRITTEN REPORTS (e.g. GEOTECHNICAL, ARBORIST, ENVIRONMENTAL, ETC.). ANY DISCREPANCY SHALL BE REFERRED TO THE ENGINEER BEFORE PROCEEDING WITH ANY WORKS
- ALL LEVELS SHALL BE OBTAINED FROM ESTABLISHED BENCH MARKS AS DIRECTED BY THE SUPERVISOR
- THE DEVELOPER, SHALL ENSURE ALL ASSOCIATED DOCUMENTATION (GEOTECHNICAL, LANDSCAPE, ARCHITECTURAL, ELECTRICAL, TELECOM, GAS ETC.) HAS BEEN APPROVED FOR CONSTRUCTION BEFORE COMMENCING ANY WORKS.
- THE CONTRACTOR IS RESPONSIBLE FOR THE LOCATION. PROTECTION AND ADJUSTMENT TO ALL IN GROUND AND ABOVE GROUND SERVICES. SEE HUNTER WATER'S NOTICE OF REQUIREMENTS
- EROSION CONTROL MEASURES, DEVICES, SILT TRAPS. ETC. ARE TO BE INSTALLED BEFORE ANY SITE DISTURBANCE IN ACCORDANCE WITH COUNCIL INSPECTORS REQUIREMENTS AND SITE SEDIMENTATION AND EROSION CONTROL PLANS.
- IT IS THE CONTRACTORS RESPONSIBILITY TO ENSURE THAT ALL WORKS ARE CARRIED OUT IN ACCORDANCE WITH THE WORK HEALTH SAFETY ACT.
- VEHICULAR ACCESS AND ALL SERVICES ARE TO BE MAINTAINED AT ALL TIMES TO ADJOINING PROPERTIES AFFECTED BY CONSTRUCTION WORKS.
- 10 ALL WASTE OR DEMOLISHED MATERIALS SHALL BE DISPOSED OF OFF SITE TO A COUNCIL APPROVED SITE. ALL FEES AND CHARGES SHALL BE INCLUDED IN THE CONTRACT SUM.
- CONSTRUCTION VIBRATION TO COMPLY WITH AS2760.1-2004 AND/OR NSW DEPT OF ENVIRONMENT AND CONSERVATION NOISE REQUIREMENTS
- EMISSIONS FROM SITE ARE NOT TO INTERFERE WITH THE AMENITY OF THE NEIGHBORHOOD.
- 13. NOISE EMISSIONS ARE TO COMPLY WITH NSW EPA NOISE CONTROL MANUAL. TIME RESTRICTIONS APPLY TO CONSTRUCTION WORKS AS FOLLOWS: 7AM TO 6PM MON-FRI: 8AM TO 1PM SAT
- TREES & SHRUBS WHICH ARE FELLED SHALL BE SALVAGED FOR RE-USE, EITHER IN LOG FORM, 14. OR AS A WOODCHIP MULCH FOR EROSION CONTROL AND/OR SITE REHABILITATION. NON-SALVAGEABLE MATERIAL SUCH AS ROOTS & STUMPS SHALL BE DISPOSED OF IN AN APPROVED MANNER.
- 'ESCP' REFERS TO EROSION AND SEDIMENT CONTROL PLAN, 'SWMP' REFERS TO SOIL AND WATER MANAGEMENT PLAN, AND, 'ESC' REFERS TO EROSION AND SEDIMENT CONTROL. 16. SEDIMENT, INCLUDES, BUT IS NOT LIMITED TO, CLAY, SILT, SAND, GRAVEL, SOIL, MUD, CEMENT
- AND CERAMIC WASTE ANY REFERENCE TO THE BLUE BOOK REFERS TO "MANAGING URBAN STORMWATER - SOILS 17 AND CONSTRUCTION", LANDCOM, 2004.
- 18. ANY REFERENCE TO THE IECA WHITE BOOKS (2008) REFERS TO IECA 2008, "BEST PRACTICE EROSION AND SEDIMENT CONTROL". BOOKS 1-6. INTERNATIONAL EROSION CONTROL ASSOCIATION (AUSTRALASIA), PICTON, NSW
- ANY MATERIAL DEPOSITED IN ANY CONSERVATION AREA FROM WORKS ASSOCIATED WITH THE DEVELOPMENT SHALL BE REMOVED IMMEDIATELY BY MEASURES INVOLVING MINIMAL GROUND AND/OR VEGETATION DISTURBANCES AND NO MACHINERY, OR FOLLOWING DIRECTIONS BY COUNCIL AND/OR WITHIN A TIMEFRAME ADVISED BY COUNCIL.

SURVEY NOTES

- THE EXISTING SURVEY CONDITIONS SHOWN ON THESE DRAWINGS HAVE BEEN DERIVED FROM SURVEY INFORMATION SUPPLIED BY DEWITT CONSULTING ENGINEERS, DATED AUGUST 2023, **REE NO 14576**
- THE FOLLOWING SURVEY INFORMATION HAS BEEN TAKEN DIRECTLY FROM THE ORIGINAL SURVEY DOCUMENTS:

POSITION DATUM:	SSM 4168
ORIENTATION:	MGA 56
EASTING:	355270.281
NORTHING:	6380990.909
HEIGHT DATUM:	RL: 35.273 (AHD)

- THE INFORMATION SHOWN IS PROVIDED AS A BASIS FOR THE DESIGN. WALLACE DESIGN GROUP 3. DOES NOT GUARANTEE THE ACCURACY OR COMPLETENESS OF THE SURVEY BASE OR ITS SUITABILITY AS A BASIS FOR CONSTRUCTION DRAWINGS.
- SHOULD DISCREPANCIES BE ENCOUNTERED DURING CONSTRUCTION BETWEEN THE SURVEY DATA AND ACTUAL FIELD DATA, CONTRACTOR SHALL CONTACT DEWITT CONSULTING.
- THE CONTRACTOR SHALL ARRANGE ALL SURVEY SETOUT TO BE CARRIED OUT BY A REGISTERED SURVEYOR.

THE ESCP

- THE ESCP AND ITS ASSOCIATED ESC MEASURES SHALL BE CONSTANTLY MONITORED, REVIEWED AND MODIFIED AS REQUIRED TO CORRECT DEFICIENCIES. COUNCIL HAS THE RIGHT TO DIRECT CHANGES IF. IN ITS OPINION. THE MEASURES THAT ARE PROPOSED OR HAVE BEEN INSTALLED ARE INADEQUATE TO PREVENT POLLUTION.
- PRIOR TO ANY ACTIVITIES ONSITE. THE RESPONSIBLE PERSON(S) IS TO BE NOMINATED. THE 2. RESPONSIBLE PERSON(S) SHALL BE RESPONSIBLE FOR THE ESC MEASURES ONSITE. THE NAME, ADDRESS AND 24 HOUR CONTACT DETAILS OF THE PERSON(S) SHALL BE PROVIDED TO COUNCIL IN WRITING. COUNCIL SHALL BE ADVISED WITHIN 48 HOURS OF ANY CHANGES TO THE RESPONSIBLE PERSON(S), OR THEIR CONTACT DETAILS, IN WRITING.
- AT LEAST 14 DAYS BEFORE THE NATURAL SURFACE IS DISTRIBUTED IN ANY NEW STAGE, THE 3. CONTRACTOR SHALL SUBMIT TO THE CERTIFIER A PLAN SHOWING ESC MEASURES FOR THAT STAGE. THE DEGREE OF DESIGN DETAIL SHALL BE BASED ON THE DISTRIBUTED AREA.
- AT ANY TIME, THE ESC MEASURES ONSITE SHALL BE APPROPRIATE FOR THE AREA OF 4. DISTURBANCE AND ITS CHARACTERISTICS, INCLUDING SOIL TYPE (IN ACCORDANCE WITH THOSE REQUIRED FOR THE SITE AS PER THE DCP).
- THE IMPLEMENTATION OF THE ESCP SHALL BE SUPERVISED BY PERSONNEL WITH 5. APPROPRIATE QUALIFICATIONS AND/OR EXPERIENCE IN ESC ON CONSTRUCTION SITES.
- THE APPROVED ESCP SHALL BE AVAILABLE ON-SITE FOR INSPECTION BY COUNCIL OFFICERS WHILE WORK ACTIVITIES ARE OCCURRING.
- THE APPROVED ESCP SHALL BE UP TO DATE AND SHOW A TIMELINE OF INSTALLATION, 7. MAINTENANCE AND REMOVAL OF ESC MEASURES.
- ALL ESC MEASURES SHALL BE APPROPRIATE FOR THE SEDIMENT TYPE(S) OF THE SOILS 8. ONSITE, IN ACCORDANCE WITH THE BLUE BOOK, IECA WHITE BOOKS OR OTHER CURRENT RECOGNISED INDUSTRY STANDARDS PERTAINING TO ESC FOR AUSTRALIAN CONDITIONS.
- ADEQUATE SITE DATA, INCLUDING SOIL DATA FROM A NATA APPROVED LABORATORY, SHALL BE OBTAINED TO ALLOW FOR THE PREPARATION OF AN APPROPRIATE ESCP, AND TO ALLOW FOR THE SELECTION, DESIGN AND SPECIFICATION OF REQUIRED ESC MEASURES.
- 10. ALL WORK SHALL BE CARRIED OUT IN ACCORDANCE WITH THE APPROVED ESCP (AS AMENDED FROM TIME TO TIME) UNLESS CIRCUMSTANCES ARISE WHERE: A) COMPLIANCE WITH THE ESCP WOULD INCREASE THE POTENTIAL FOR ENVIRONMENTAL HARM B) CIRCUMSTANCES CHANGE DURING CONSTRUCTION AND THOSE CIRCUMSTANCES COULD

NOT HAVE BEEN FORSEEN; OR C) COUNCIL DETERMINES THAT UNACCEPTABLE OFF-SITE SEDIMENTATION IS OCCURRING AS A RESULT OF A LAND-DISTURBING ACTIVITY. IN EITHER CASE, THE PERSON(S) RESPONSIBLE MAY BE REQUIRED TO TAKE ADDITIONAL, OR ALTERNATIVE PROTECTIVE ACTION, AND/OR UNDERTAKE REASONABLE RESTORATION WORKS WITHIN THE TIMEFRAME SPECIFIED BY THE COLINCI

11. ADDITIONAL ESC MEASURES SHALL BE IMPLEMENTED, AND A REVISED ESCP SUBMITTED FOR APPROVAL TO THE CERTIFIER (WITHIN 5 BUSINESS DAYS OF AN SUCH AMENDMENTS) IN THE EVENT THAT

A) THERE IS A HIGH PROBABILITY THAT SERIOUS OR MATERIAL ENVIRONMENTAL HARM MAY OCCUR AS A RESULT OF SEDIMENT LEAVING THE SITE; OR

- B) THE IMPLEMENTED WORKS FAIL TO ACHIEVE COUNCIL'S WATER QUALITY OBJECTIVES SPECIFIED IN THESE CONDITIONS; OR
- C) SITE CONDITIONS SIGNIFICANTLY CHANGE; OR
- D) SITE INSPECTIONS INDICATE THAT THE IMPLEMENTED WORKS ARE FAILING TO ACHIEVE THE "OBJECTIVE" OF THE ESCP
- 12. A COPY OF ANY AMENDED ESCP SHALL BE FORWARDED TO AN APPROPRIATE COUNCIL OFFICER, WITHIN FIVE BUSINESS DAYS OF ANY SUCH AMENDMENTS.

SITE ESTABLISHMENT INCLUDING CLEARING AND MULCHING

- NO LAND CLEARING SHALL BE UNDERTAKEN UNLESS PRECEDED BY THE INSTALLATION OF ADEQUATE DRAINAGE AND SEDIMENT CONTROL MEASURES, UNLESS SUCH CLEARING IS REQUIRED FOR THE PURPOSE OF INSTALLING SUCH MEASURES. IN WHICH CASE, ONLY THE MINIMUM CLEARING REQUIRED TO INSTALL SUCH MEASURES SHALL OCCUR.
- 2. BULK TREE CLEARING AND GRUBBING OF THE SITE SHALL BE IMMEDIATELY FOLLOWED BY SPECIFIED TEMPORARY EROSION CONTROL MEASURES (E.G. TEMPORARY GRASSING OR MULCHING) PRIOR TO THE COMMENCEMENT OF EACH STAGE OF CONSTRUCTION WORKS.
- TREES AND VEGETATION CLEARED FROM THE SITE SHALL BE MULCHED ONSITE WITHIN 7 DAYS 3. OF CLEARING.
- APPROPRIATE MEASURES SHALL BE UNDERTAKEN TO CONTROL ANY DUST ORIGINATING DUE TO THE MULCHING OF VEGETATION ONSITE.
- ALL OFFICE FACILITIES AND OPERATIONAL ACTIVITIES SHALL BE LOCATED SUCH THAT ANY 5. EFFLUENT, INCLUDING WASH-DOWN WATER, CAN BE TOTALLY CONTAINED AND TREATED WITHIN THE SITE.
- ALL REASONABLE AND PRACTICABLE MEASURES SHALL BE TAKEN TO ENSURE STORMWATER RUNOFF FROM ACCESS ROADS AND STABILISED ENTRY/EXIT SYSTEMS DRAINS TO AN APPROPRIATE SEDIMENT CONTROL DEVICE.
- SITE EXIT POINTS SHALL BE APPROPRIATELY MANAGED TO MINIMISE THE RISK OF SEDIMENT BEING TRACKED ONTO SEALED, PUBLIC ROADWAYS.
- STORMWATER RUNOFF FROM ACCESS ROADS AND STABILIZED ENTRY/EXIT POINTS SHALL DRAIN TO AN APPROPRIATE SEDIMENT CONTROL DEVICE.
- THE APPLICANT SHALL ENSURE AN ADEQUATE SUPPLY OF ESC, AND APPROPRIATE POLLUTION CLEAN-UP MATERIALS ARE AVAILABLE ON-SITE AT ALL TIMES.
- ALL TEMPORARY EARTH BANKS, FLOW DIVERSION SYSTEMS, AND SEDIMENT BASIN EMBANKMENTS SHALL BE MACHINE-COMPACTED, SEEDED AND MULCHED WITHIN 10 DAYS OF FORMATION FOR THE PURPOSE OF ESTABLISHING A VEGETATIVE COVER, OR LINED APPROPRIATELY.
- SEDIMENT DEPOSITED OFF SITE AS A RESULT OF ON--SITE ACTIVITIES SHALL BE COLLECTED AND THE AREA CLEANED/REHABILITATED AS SOON AS REASONABLE AND PRACTICABLE.
- 12 CONCRETE WASTE AND CHEMICAL PRODUCTS INCLUDING PETROLEUM AND OIL-BASED PRODUCTS, SHALL BE PREVENTED FROM ENTERING ANY INTERNAL OR EXTERNAL WATER BODY. OR ANY EXTERNAL DRAINAGE SYSTEM, EXCLUDING THOSE ON-SITE WATER BODIES SPECIFICALLY DESIGNED TO CONTAIN AND/OR TREAT SUCH MATERIAL. APPROPRIATE

MEASURES SHALL BE INSTALLED TO TRAP THESE MATERIALS ONSITE

- BRICK, TILE OR MASONRY CUTTINGS SHALL BE CARRIED OUT ON A PERVIOUS SURFACE (E.G. 13. GRASS OR OPEN SOIL) AND IN SUCH A MANNER THAT ANY RESULTING SEDIMENT-LADEN RUNOFF IS PREVENTED FROM DISCHARGING INTO A GUTTER, DRAIN OR WATER. APPROPRIATE MEASURES SHALL BE INSTALLED TO TRAP THESE MATERIALS ONSITE.
- NEWLY SEALED HARD-STAND AREAS (E.G. ROADS, DRIVEWAYS AND CAR PARKS) SHALL BE 14. SWEPT THOROUGHLY AS SOON AS PRACTICABLE AFTER SEALING/SURFACING TO MINIMISE THE RISK OF COMPONENTS OF THE SURFACING COMPOUND ENTERING THE STORMWATER DRAINS.
- STOCKPILES OF ERODIBLE MATERIAL SHALL BE PROVIDED WITH AN APPROPRIATE PROTECTIVE 15. COVER (SYNTHETIC OR ORGANIC) IF THE MATERIALS ARE LIKELY TO BE STOCKPILED FOR MORE THAN 10 DAYS.
- STOCKPILES, TEMPORARY OR PERMANENT, SHALL NOT BE LOCATED IN AREAS IDENTIFIED AS 16. NO-GO ZONES (INCLUDING, BUT NOT LIMITED TO, RESTRICTED ACCESS AREAS, BUFFER ZONES, OR AREAS OF NON-DISTURBANCE) ON THE ESCP
- NO MORE THAN 150m OF STORMWATER, SEWER LINE OR OTHER SERVICE TRENCH SHALL BE TO OPEN AT ANY ONE TIME.
- 18. SITE SPOIL SHALL BE LAWFULLY DISPOSED OF IN A MANNER THAT DOES NOT RESULT IN ONGOING SOIL EROSION OR ENVIRONMENTAL HARM.
- WHEREVER REASONABLE AND PRACTICABLE. STORMWATER RUNOFF ENTERING THE SITE FROM 19. EXTERNAL AREAS, AND NON-SEDIMENT LADEN (CLEAN) STORMWATER RUNOFF ENTERING A WORK AREA OR AREA OF SOIL DISTURBANCE, SHALL BE DIVERTED AROUND OR THROUGH THAT AREA IN A MANNER THAT MINIMISES SOIL EROSION AND THE CONTAMINATION OF THAT WATER FROM ALL DISCHARGES UP TO THE SPECIFIED DESIGN STORM DISCHARGE

SITE MANAGEMENT INCLUDING DUST

- PRIORITY SHALL BE GIVEN TO THE PREVENTION, OR AT LEAST THE MINIMISATION, OF SOIL EROSION, RATHER THAN THE TRAPPING OF DISPLACED SEDIMENT. SUCH A CLAUSE SHALL NOT REDUCE THE RESPONSIBILITY TO APPLY AND MAINTAIN, AT ALL TIMES, ALL NECESSARY ESC MEASURES.
- MEASURES USED TO CONTROL WIND EROSION SHALL BE APPROPRIATE FOR THE LOCATION AND PREVENT SOIL EROSION AND EMISSIONS FROM SITE AT ALL TIMES, INCLUDING WORKING HOURS, OUT OF HOURS, WEEKENDS, PUBLIC HOLIDAYS, AND DURING ANY OTHER SHUTDOWN PERIODS.
- 3. THE APPLICATION OF LIQUID OR CHEMICAL-BASED DUST SUPPRESSION MEASURES SHALL ENSURE THAT SEDIMENT-LADEN RUNOFF RESULTING FROM SUCH MEASURES DOES NOT CREATE A TRAFFIC OR ENVIRONMENTAL HAZARD.
- ALL CUT AND FILL EARTH BATTERS LESS THAN 3m IN ELEVATION SHALL BE TOPSOILED, AND GRASS SEEDED/HYDROMULCHED WITHIN 10 DAYS OF COMPLETION OF GRADING IN CONSULTATION WITH COUNCIL
- ALL DISTURBED AREAS SHALL BE STABILISED IN ACCORDANCE WITH TIMELINES IN THE BLUE BOOK
- ALL REASONABLE AND PRACTICABLE MEASURES SHALL BE TAKEN TO PREVENT, OR AT LEAST 6 MINIMISE, THE RELEASE OF SEDIMENT FROM THE SITE.
- SUITABLE ALL-WEATHER MAINTENANCE ACCESS SHALL BE PROVIDED TO ALL SEDIMENT CONTROL DEVICES.
- SEDIMENT CONTROL DEVICES OTHER THAN SEDIMENT BASINS SHALL BE DE-SILTED AND MADE FULLY OPERATIONAL AS SOON AS REASONABLE AND PRACTICABLE AFTER A SEDIMENT-PRODUCING EVENT, WETHER NATURAL OR ARTIFICIAL, IF THE DEVICES SEDIMENT RETENTION CAPACITY FALLS BELOW 75% OF ITS DESIGNED RETENTION CAPACITY.
- ALL EROSION AND SEDIMENT CONTROL MEASURES. INCLUDING DRAINAGE CONTROL MEASURES. SHALL BE MAINTAINED IN PROPER WORKING ORDER AT ALL TIMES DURING THEIR OPERATION LIVES.
- WASHING/FLUSHING OF SEALED ROADWAYS SHALL ONLY OCCUR WHERE SWEEPING HAS 10. FAILED TO REMOVE SUFFICIENT SEDIMENT AND THERE IS A COMPELLING NEED TO REMOVE THE REMAINING SEDIMENT (E.G. FOR SAFETY REASONS). IN SUCH CIRCUMSTANCES, ALL REASONABLE AND PRACTICABLE SEDIMENT CONTROL MEASURES SHALL BE USED TO PREVENT, OR AT LEAST MINIMISE, THE RELEASE OF SEDIMENT INTO THE RECEIVING WATERS. ONLY THOSE MEASURES THAT WILL NOT CAUSE SAFETY AND PROPERTY FLOODING ISSUES SHALL BE EMPLOYED SEDIMENT REMOVED FROM ROADWAYS SHALL BE DISPOSED OF IN A LAWEU MANNER THAT DOES NOT CAUSE ONGOING SOIL EROSION OR ENVIRONMENTAL HARM.
- SEDIMENT REMOVED FROM SEDIMENT TRAPS AND PLACES OF SEDIMENT DEPOSITIONS SHALL 11. BE DISPOSED OF IN A LAWFUL MANNER THAT DOES NOT CAUSE ONGOING SOIL EROSION OR ENVIRONMENTAL HARM.

REVEGETATION/STABILISATION

- TEMPORARY STABILISATION MAY BE ATTAINED USING VEGETATION, NON WETTABLE SOIL POLYMERS, OR PNEUMATICALLY APPLIED EROSION CONTROLS.
- ALL CUT AND FILL EARTH BATTERS LESS THAN 3m IN ELEVATION SHALL BE TOPSOILED, AND GRASS SEEDED/HYDROMULCHED WITHIN 10 DAYS OF COMPLETION OF GRADING IN CONSULTATION WITH COUNCIL.
- AT THE COMPLETION OF FORMATION IN ANY SECTION, ALL DISTRIBUTED AREAS SHALL BE STABILISED IN ACCORDANCE WITH TIME LINES IN THE BLUE BOOK.
- THE COUNCIL SEED MIX SHALL BE USED UNLESS STATED ON THE ESCP/SWMP. THE PH LEVEL OF TOPSOIL SHALL BE APPROPRIATE TO ENABLE ESTABLISHMENT AND GROWTH
- OF SPECIFIED VEGETATION PRIOR TO INITIATING THE ESTABLISHMENT OF VEGETATION. NON REWETTABLE BINDER SHALL BE USED IN ALL HYDROMULCH/HYDROSEED POLYMER MIXES
- ON SLOPES OR WORKS ADJACENT TO A WATER COURSE. SOIL AMELIORANTS SHALL BE ADDED TO THE SOIL IN ACCORDANCE WITH AN APPROVED LANDSCAPE PLAN, VEGETATION MANAGEMENT PLAN, AND/OR SOIL ANALYSIS.
- PROCEDURES FOR INITIATING A SITE SHUTDOWN, WHETHER PROGRAMMED OR UN-PROGRAMMED, SHALL INCORPORATE REVEGETATION OF ALL SOIL DISTURBANCES UNLESS OTHERWISE APPROVED BY COUNCIL. THE STABILISATION WORKS SHALL NOT RELY UPON THE LONGEVITY OF NON-VEGETATED EROSION CONTROL BLANKETS, OR TEMPORARY SOIL BINDERS.

WAIN THE COPYRIGHT OF WALLACE RASTRUCTURE DESIGN PTY LTD. THIS			THIS	DRAWING IS NOT APPROVED FOR CONST	RUCTION	JNLESS EN	DORSED	A
WING MUST NOT BE REPRODUCED IN ANY RM WITHOUT THE CONSENT OF WALLACE								E
RASTRUCTURE DESIGN PTY LTD. THIS WWING HAS BEEN PRODUCED FOR THE POSE OF INDICATING THE DIAGRAMMATIC BIGN INTENT AND SCOPE OF WORKS								Ρ
UIRED FOR THE INSTALLATION OF SERVICES DETAILED, AND PERTAINED WITHIN THE	DWG IN COLOUR							В
CIFICATION AND SHOULD BE READ IN NJUNCTION WITH THE ARCHITECTURAL								
CIFICATION, ASSOCIATED SPECIFICATION, DES AND STANDARDS, ALL DIMENSIONS,			В	RD LEVEL / NOTE AMENDMENTS	05.05.25	K.B.		Ir
ELS AND EXISTING SERVICES SHALL BE ESTIGATED AND CONFIRMED ON SITE BY THE			Α	PRELIMINARY ISSUE	01.05.25	K.B.		0
ICONTRACTOR AND BUILDER PRIOR TO THE MMENCEMENT OF ANY WORKS.			REV	DESCRIPTION	DATE	APPV'D	ENDO'D	
OTTED BY:- KEN DATE:- 5 May 2025	3 59 PM FILENA	ME:- 0:/PROJECTS/2023/23128 - 34 WYND	ELLA RO	DAD, LOCHINVAR\CAD\TITLE\23128 CIV PRELDESIGN	WYNDELLA	ROAD (B)		

BDA ARCHITECTS O Box 308 ROAD BEACH QLD 4218 nfo@bdaarch.com.au 7 5555 2600

Commercial 7 Pty Ltd ATF Commercial 7 Unit Tru PO Box 1138 HUNTERS HILL NSW 2110

CE INFRASTRUCTURE	PROJECT: ROAD IMPROVEME
N PTY LTD	LOT 225, DP 246447
ACE DESIGN GROUP PTY LTD 14 952	34 WYNDELLA ROAD
ARLESTOWN, NSW 2290	

SITE MONITORING AND MAINTENANCE

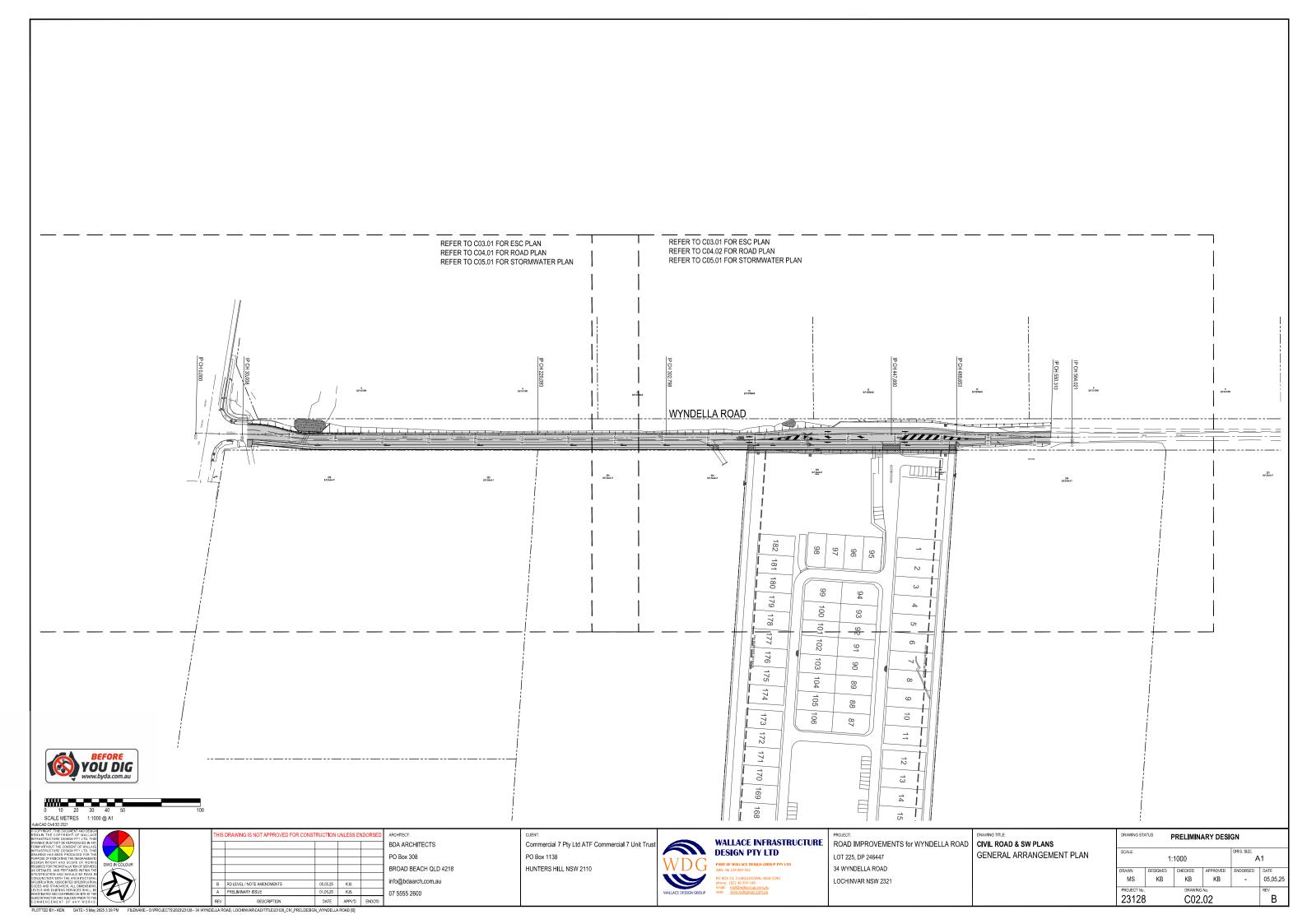
- THE APPLICANT SHALL ENSURE THAT APPROPRIATE PROCEDURES AND SUITABLY QUALIFIED PERSONNEL ARE ENGAGED TO PLAN AND CONDUCT SITE INSPECTIONS AND WATER QUALITY MONITORING THROUGHOUT THE CONSTRUCTION AND MAINTENANCE PHASE.
- ALL ESC MEASURES SHALL BE INSPECTED AND ANY MAINTENANCE UNDERTAKEN: A) AT LEAST DAILY (WHEN WORKS IS OCCURRING ON-SITE); AND B) AT LEAST WEEKLY (WHEN WORKS IS NOT OCCURRING ON-SITE) AND C) WITHIN 24 HOURS OF EXPECTED RAINFALL; AND
- D) WITHIN 18 HOURS OF A RAINFALL EVENT THAT CAUSES RUNOFF ON THE SITE. WRITTEN RECORDS SHALL BE KEPT ONSITE OF ESC MONITORING AND MAINTENANCE ACTIVITIES CONDUCTED DURING THE CONSTRUCTION AND MAINTENANCE PERIODS, AND BE AVAILABLE TO COUNCIL OFFICERS ON REQUEST.
- ALL ENVIRONMENTAL RELEVANT INCIDENTS SHALL BE RECORDED IN A FIELD LOG THAT SHALL REMAIN ACCESSIBLE TO ALL RELEVANT REGULATORY AUTHORITIES.
- ALL WATER QUALITY DATA, INCLUDING DATES OF RAINFALL, DATES OF TESTING, TESTING RESULTS AND DATES OF WATER RELEASE, SHALL BE KEPT IN AN ON-SITE REGISTER. THE REGISTER IS TO BE MAINTAINED UP TO DATE FOR THE DURATION OF THE APPROVED WORKS AND BE AVAILABLE ON-SITE FOR INSPECTION BY ALL RELEVANT REGULATORY AUTHORITIES ON REQUEST.
- AT NOMINATED INSTREAM WATER MONITORING SITES, A MINIMUM OF 3 WATER SAMPLES SHALL BE TAKEN AND ANALYSED, AND THE AVERAGE RESULT USED TO DETERMINE QUALITY.

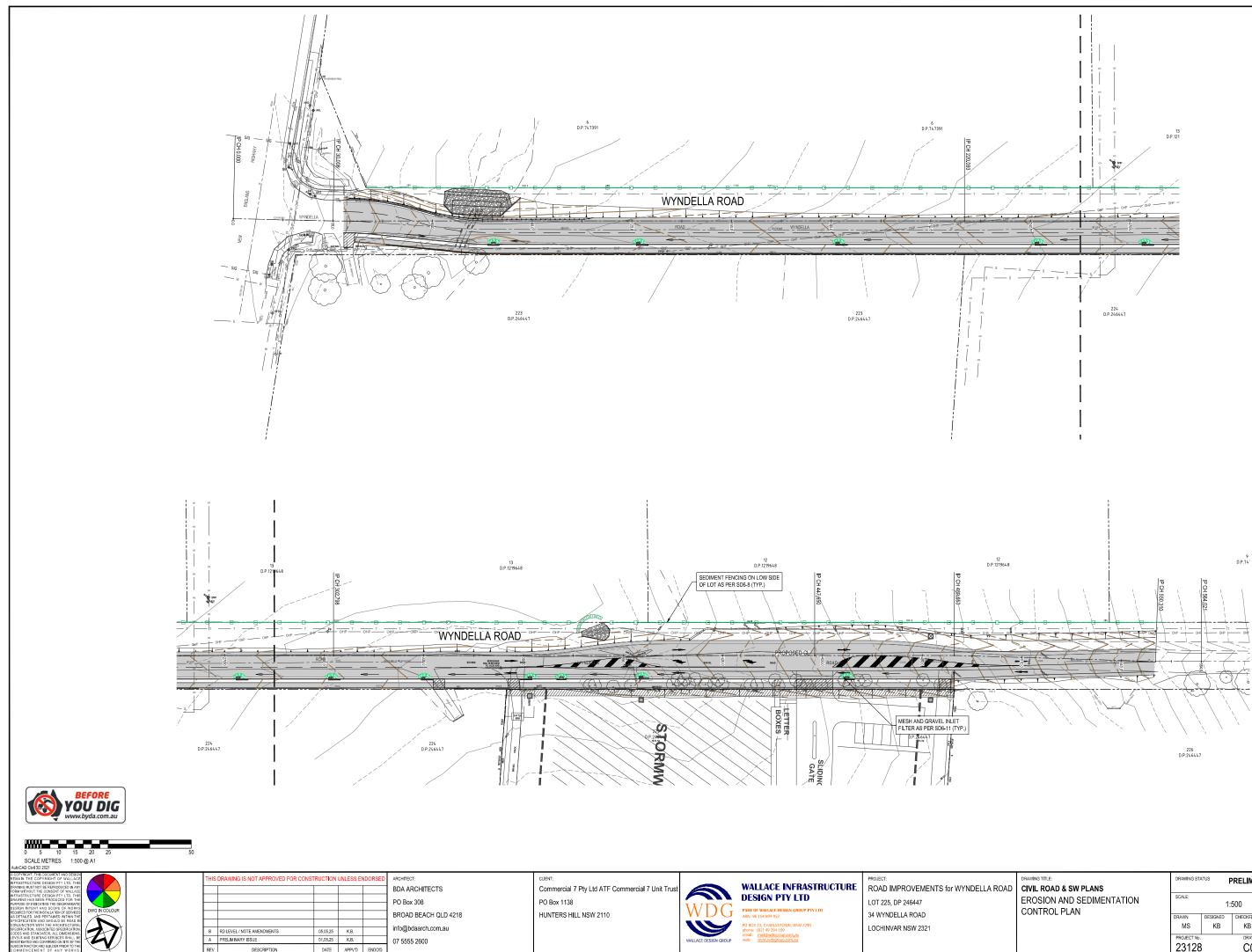
STORMWATER NOTES

- THESE DRAWINGS ARE TO BE READ IN CONJUNCTION WITH RELEVANT ARCHITECTURAL DETAILS.
- ALL WORKS ARE TO BE IN ACCORDANCE WITH AS3500, COUNCIL'S DEVELOPMENT CONTROL PLAN AND PROPRIETARY MANUFACTURERS RECOMMENDATIONS.
- UNLESS OTHERWISE STATED, ALL STORMWATER PIPES (INCLUDING DOWNPIPES AND RAINWATER TANK OVERFLOW PIPES) ARE TO BE uPVC SEWER GRADE, U.N.O JOINTED & INSTALLED TO MANUFACTURERS RECOMMENDATIONS.
- ALL uPVC STORMWATER LINES TO HAVE ALL JOINTS, INC. DOWNPIPE CONNECTIONS, FULLY SOLVENT WELDED, INCLUDING ANY CHARGED LINES.
- CONNECT DOWNPIPES AS REQUIRED TO NOMINATED HARVESTING TANK IN ACCORDANCE WITH APPROVED DEVELOPMENT PLANS AND HYDRAULIC ENGINEERS DESIGN. ALL LEVELS ARE DATUM AHD.
- ALL LEVELS ARE FINISHED PAVEMENT OR LAWN LEVELS.
- CONTRACTOR TO ALLOW FOR ALL PIPE SUPPORT SYSTEM TO SOFFIT AS PER MANUFACTURERS SPECIFICATIONS
- ALL CONCRETE TO BE MANUFACTURED AND SUPPLIED IN ACCORDANCE WITH AS1379. AT COUNCILS DISCRETION, ALL CONCRETE CAN BE SUBJECT TO PROJECT ASSESSMENT AND TESTING TO AS1379
- 11 MINIMUM PIPE COVERS TO BE IN ACCORDANCE WITH AS3500
- PITS TO BE FILLED ACCORDINGLY TO MEET INVERTS AS NEEDED. 12. CONTRACTOR TO CONFIRM ALL LEVELS PRIOR TO CONSTRUCTION. ANY DISCREPANCIES ARE 13. TO BE IMMEDIATELY REPORTED TO WALLACE DESIGN GROUP.

SUBSOIL DRAINAGE NOTES

- CONSTRUCTION SHALL BE IN ACCORDANCE WITH COUNCIL'S CONSTRUCTION SPECIFICATIONS FOR SUBSURFACE DRAINAGE.
- SUBSOIL PIPE TO BE Ø100 SLOTTED PVC OR CORRUGATED CIRCULAR PLASTIC PIPE AND ENCLOSED IN SEAMLESS FILTER FABRIC SOCK
- SUBSOIL DRAINS SHALL CONSIST OF A 300 (MINIMUM) WIDE TRENCH, BACKFILLED WITH 7 OR 10mm AGGREGATE AND WRAPPED IN BIDIM A12 GEOTEXTILE FABRIC OR SIMILAR, LAPPED AT THE TOP. DEPTH OF TRENCH TO EXTEND 450 (MINIMUM) IN ROCK OR 600 (MINIMUM) IN EARTH BELOW FINISHED SUB-GRADE LEVEL. INVERT OF TRENCH SHOULD ALSO BE LOWER THAN THE INVERT OF ANY SERVICE CROSSINGS.

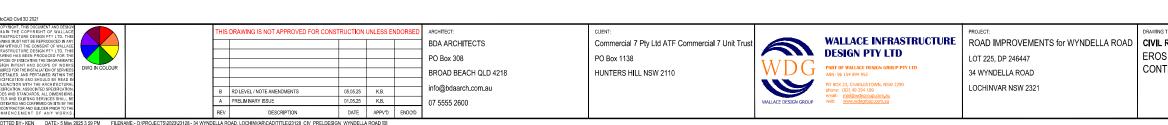

ROAD PAVEMENT NOTES

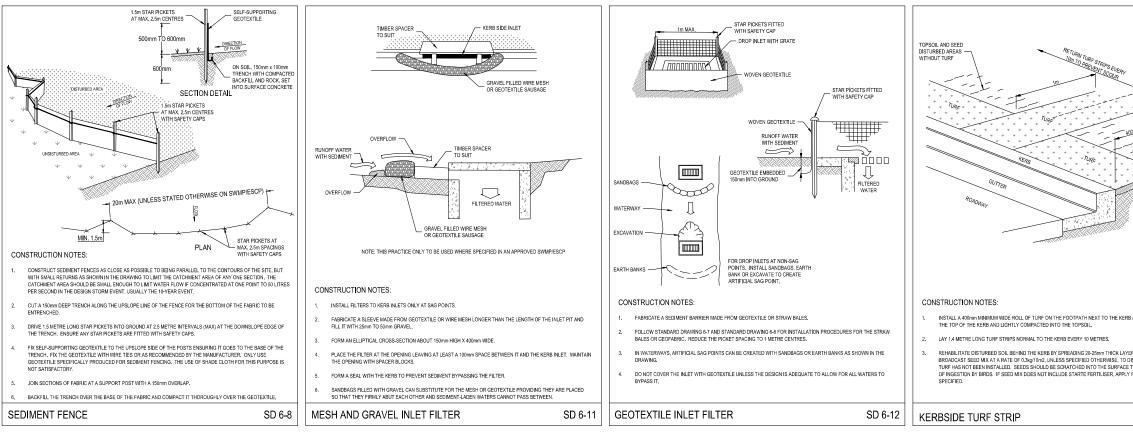

THE PAVEMENT DESIGN RECOMMENDATIONS SHOWN ON THESE DRAWINGS ARE FOR CONCEPT DESIGN AND ARE INDICATIVE PAVEMENT SECTIONS ONLY. A DETAILED GEOTECHNICAL STUDY OF THE SURROUNDING SOILSAND PAVEMENT DESIGN RECOMMENDATIONS ARE TO BE OBTAINED BY A QUALIFIED/REGISTERED GEOTECHNICAL ENGINEER PRIOR TO ANY CONSTRUCTION BEING UNDERTAKEN

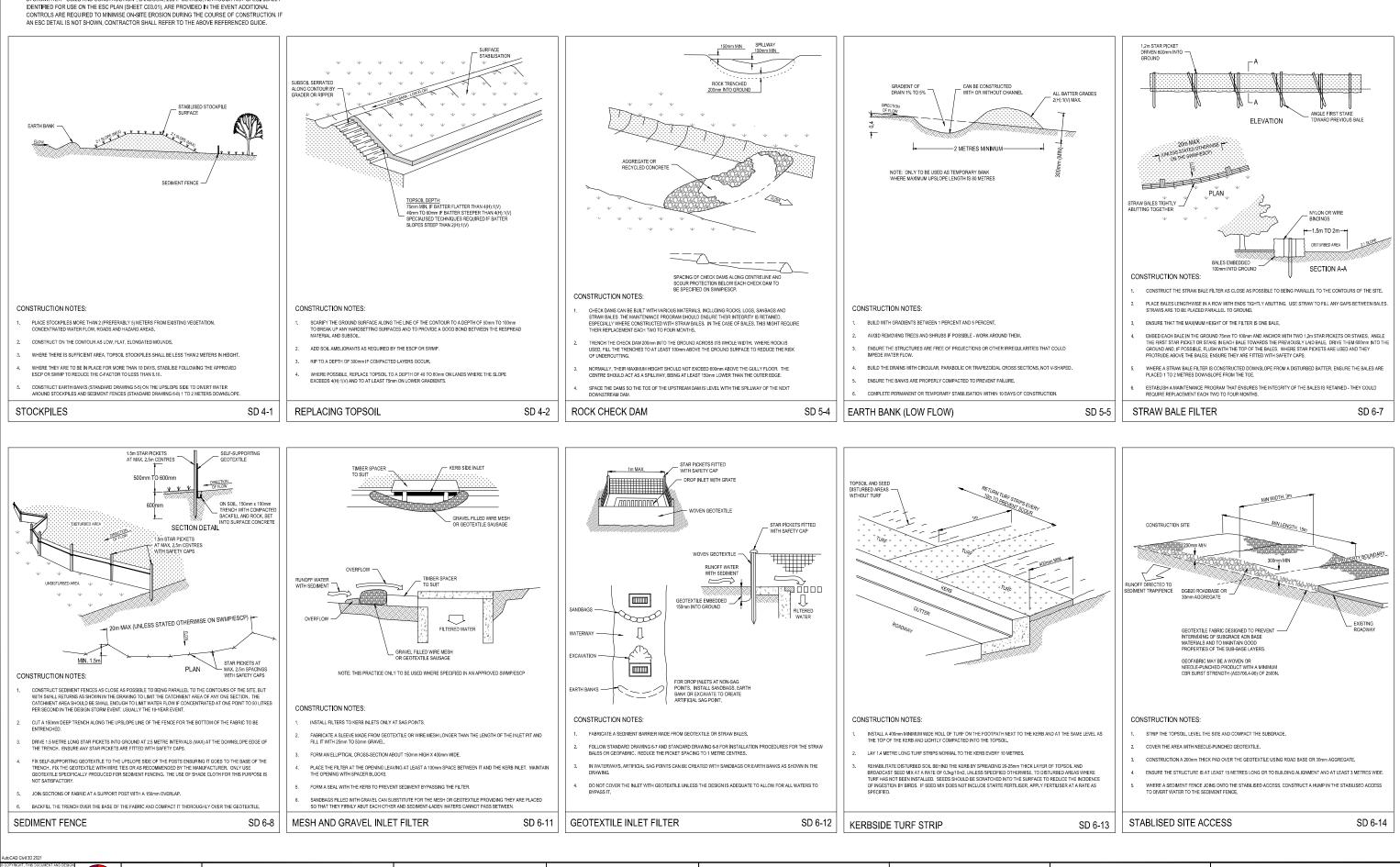
RETAINING WALL NOTES

ALL RETAINING WALLS SHOWN ON THESE PLANS SHALL BE DESIGNED BY A QUALIFIED & REGISTERED STRUCTURAL ENGINEERING AT TIME OF CONSTRUCTION CERTIFICATE STAGE.

VING TITLE: /IL ROAD & SW PLANS	DRAWING STA	ITUS F	PRELIMINA	ARY DESI	GN	
NERAL NOTES	SCALE: N.T.S.			ORIG. SIZE A1		
	DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE
	MS	KB	КВ	KB	-	05.05.25
	PROJECT No.		DRAWING	No.		REV
	23128		C02.	01		В

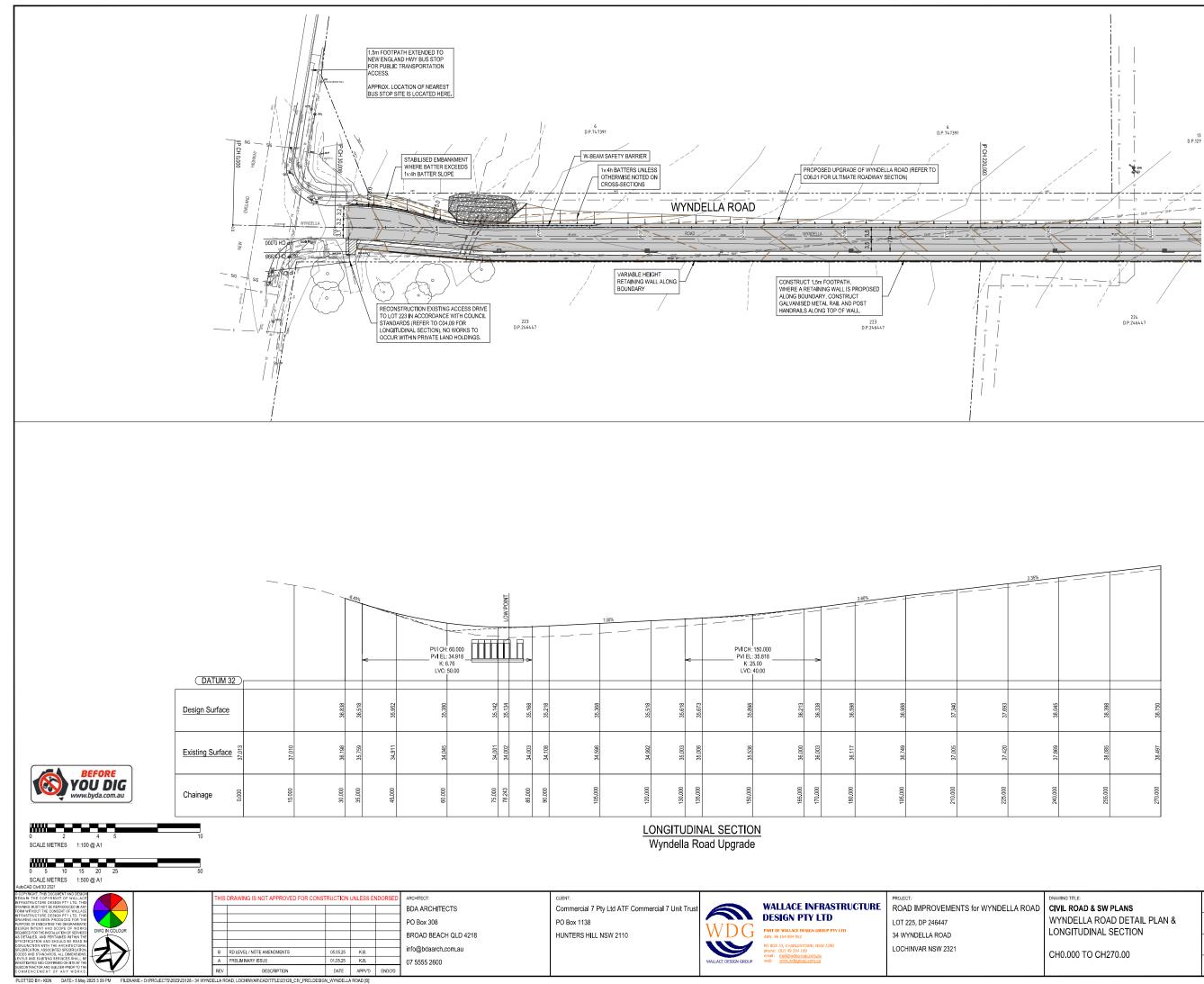


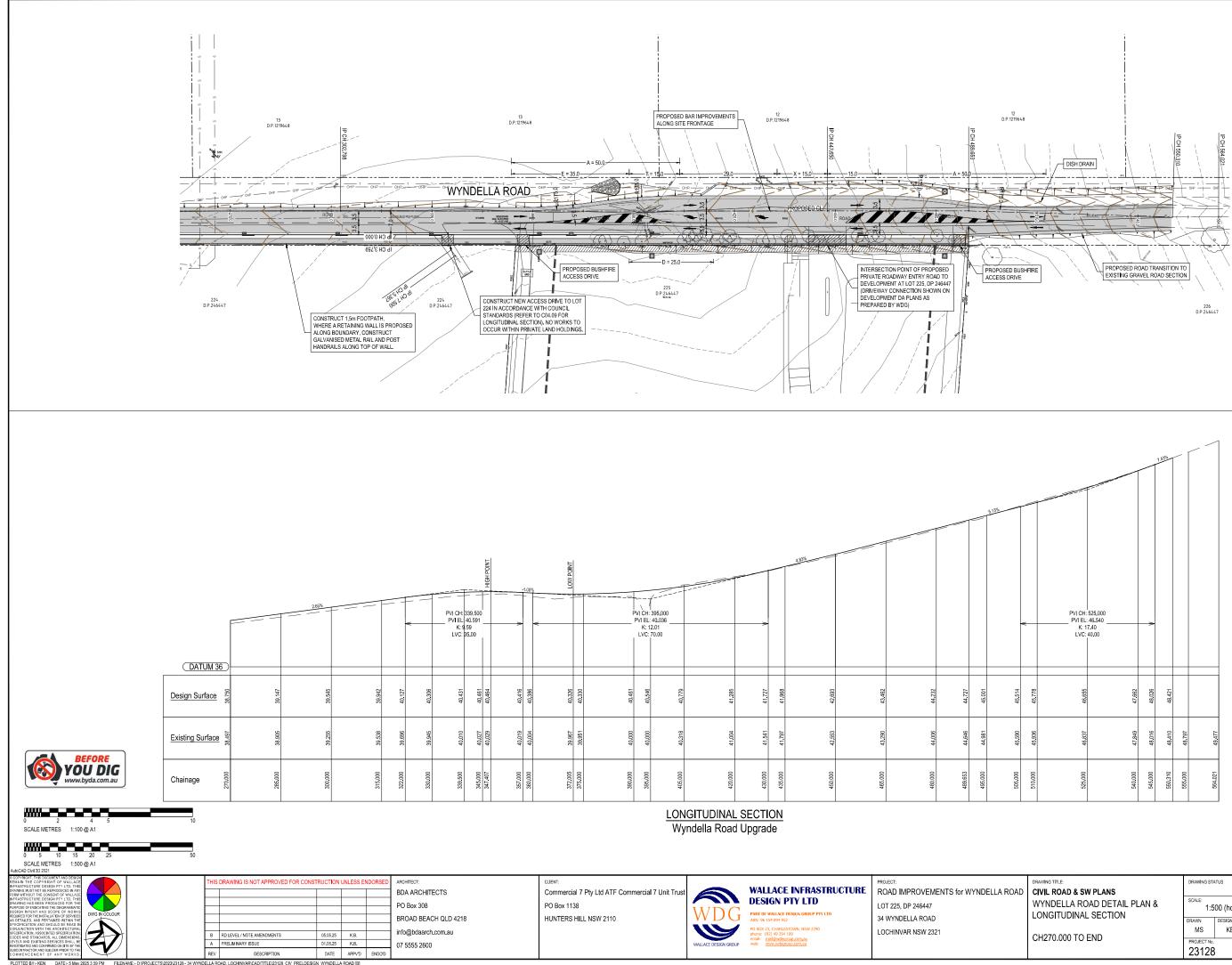

REV


R\CAD\TITLE\23128 CIV

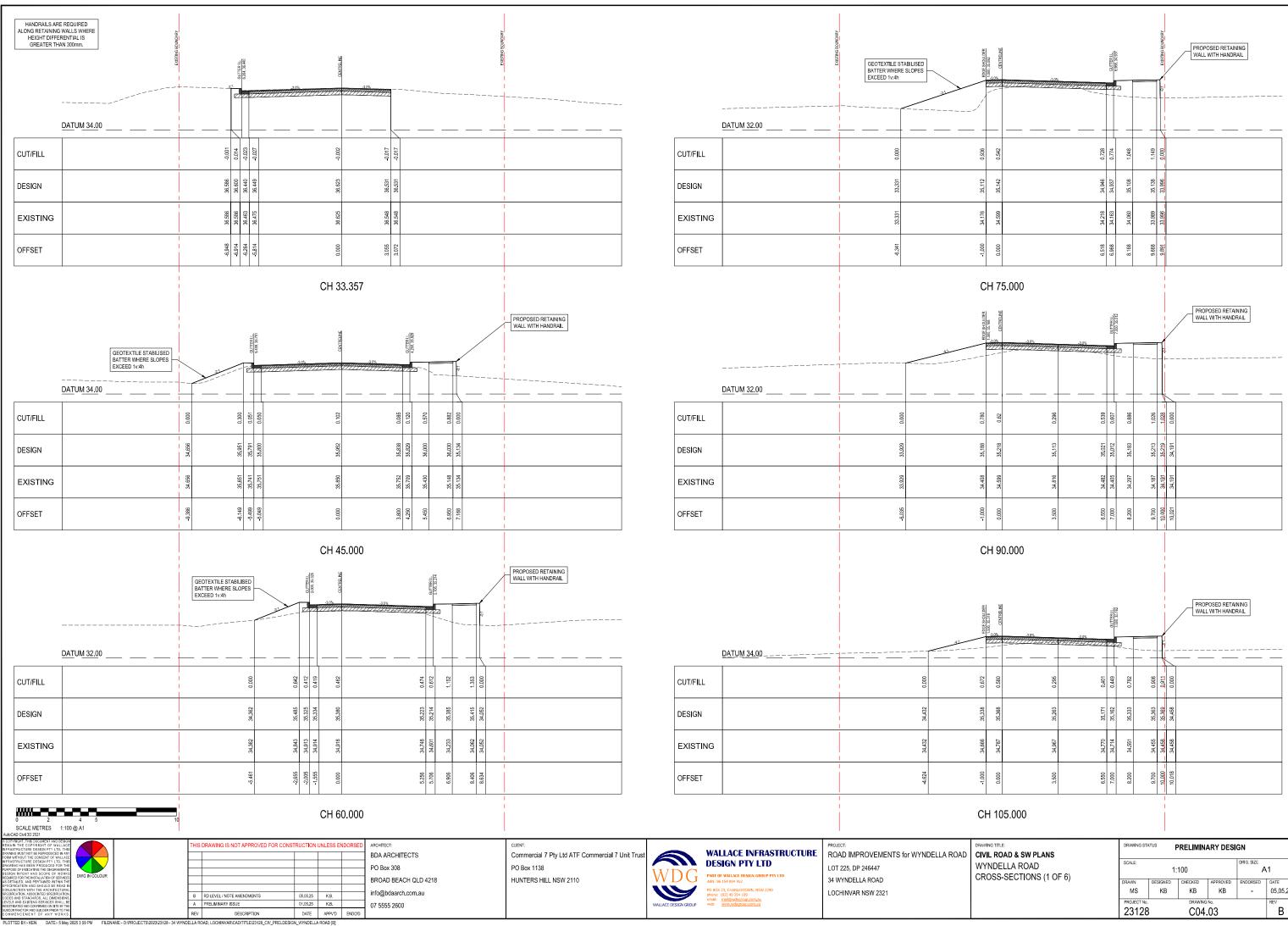
SIGN WYNDELLA ROAD I

WING TITLE: VIL ROAD & SW PLANS	DRAWING STATUS PRELIMINARY DESI				IGN		
ROSION AND SEDIMENTATION	SCALE:	1:	500		ORIG. SIZE A1		
SINTI OE TEXIN	DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE	
	MS	KB	KB	KB	-	05.05.25	
	PROJECT No. 23128		DRAWING C03.			B	




ALL EROSION & SEDIMENTATION CONTROL (ESC) PLAN DETAILS SHOWN ARE FROM "MANAGING URBAN STORMWATER - SOILS AND CONSTRUCTION", LANDCOM, 2004. DETAILS, ALTHOUGH NOT SPECIFICALLY

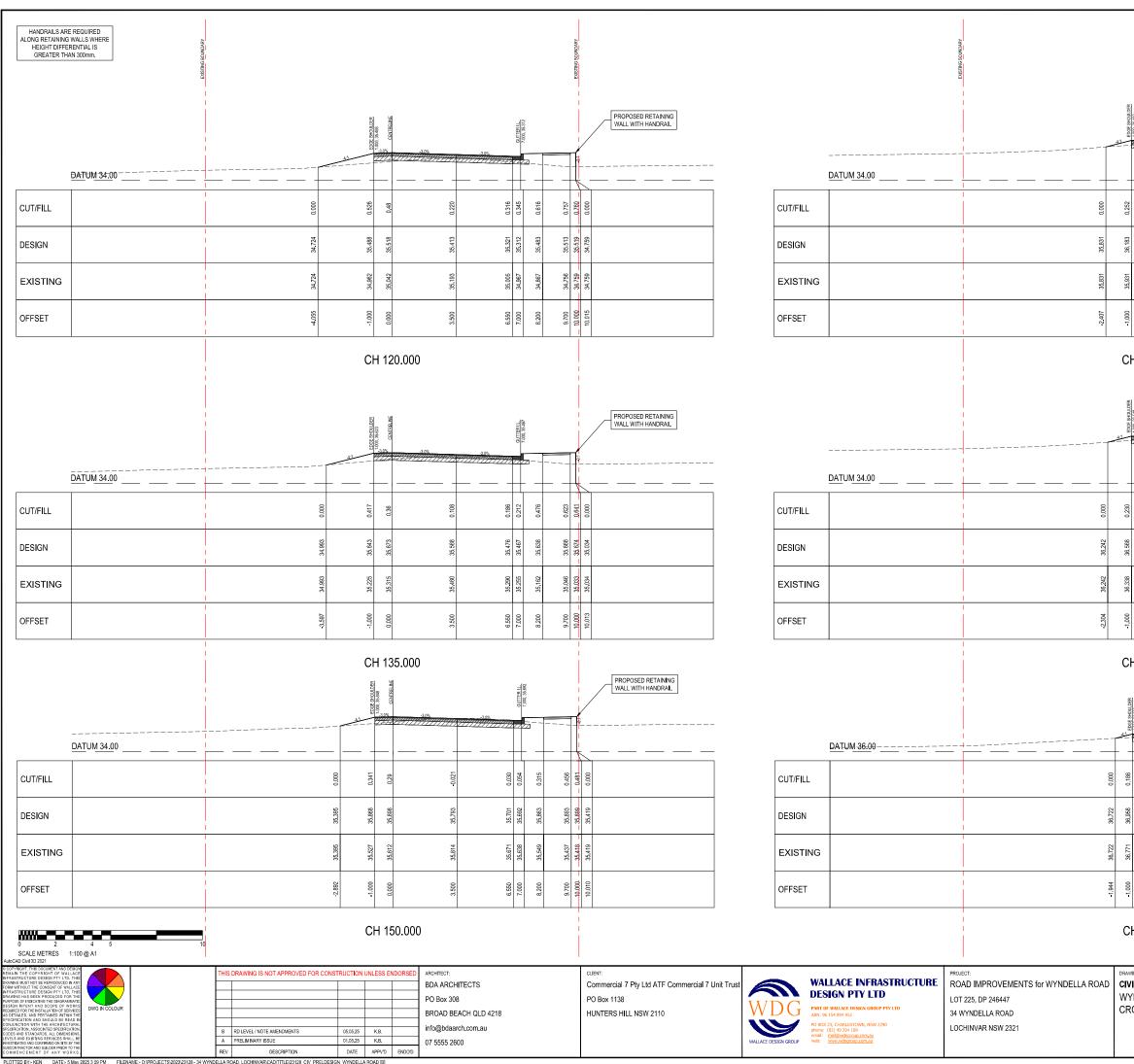
ING TITLE: IL ROAD & SW PLANS	DRAWING STA	^{itus} F	RELIMINA	ARY DESI	GN	
OSION AND SEDIMENTATION NTROL DETAILS	SCALE:	N.	ORIG. SIZE A1			
NINOE DE TAILO	DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE
	MS	KB	КВ	KB	-	05.05.25
	PROJECT No.		DRAWING	No.		REV
	23128		C03.	.02		В


~	
<u>8</u>	20
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5
38,398	38.750
.,	
10	
<del>2</del> 6	6
38.085	38.497
8	8
.,	
9	9
8	8
	I 31
255.000	270.000
~	~ ~
	1

WING TITLE: /IL ROAD & SW PLANS	DRAWING ST/	ATUS F	RELIMINA	ARY DESI	GN	
YNDELLA ROAD DETAIL PLAN & NGITUDINAL SECTION	SCALE: 1:5	00 (horiz.)	; 1:100 (ve	ert.)	ORIG. SIZE	.1
	DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE
H0.000 TO CH270.00	MS	KB	КВ	KB	-	05.05.25
10.000 10 01270.00	PROJECT No.		DRAWING	No.		REV
	23128		C04.	.01		В



4 WYNDELLA ROAD, LOCH VAR\CAD\TITLE\23128 CIV PRE LDESIGN WYNDELLA ROAD IB


WING TITLE: VIL ROAD & SW PLANS	DRAWING STA	^{itus} F	RELIMIN	ARY DES	GN	
YNDELLA ROAD DETAIL PLAN & NGITUDINAL SECTION	SCALE: 1:5	00 (horiz.)	; 1:100 (ve	ert.)	ORIG. SIZE	.1
	DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE
1270.000 TO END	MS	KB	KB	KB	-	05.05.25
	PROJECT No.		DRAWING	No.		REV
	23128		C04.	.02		В



EUGE STUULUEK	1 1.000, 35.168		97 <u>747777777</u>	/ GUTTERILL	1			/	PROPOSED RETAINING WALL WITH HANDRAIL
00.00	0.62	0.296	0.539	0.607	0.886	1.026	1.028	0000	
001-00	35.218	35.113	35.021	35.012	35.183	35.213	35.219	34,191	
001-1-0	34.599	34.816	34.482	34,405	34.297	34.187	34,191	34.191	
00011	0.000	3.500	6.550	7.000	8.200	9.700	10.000	10.021	

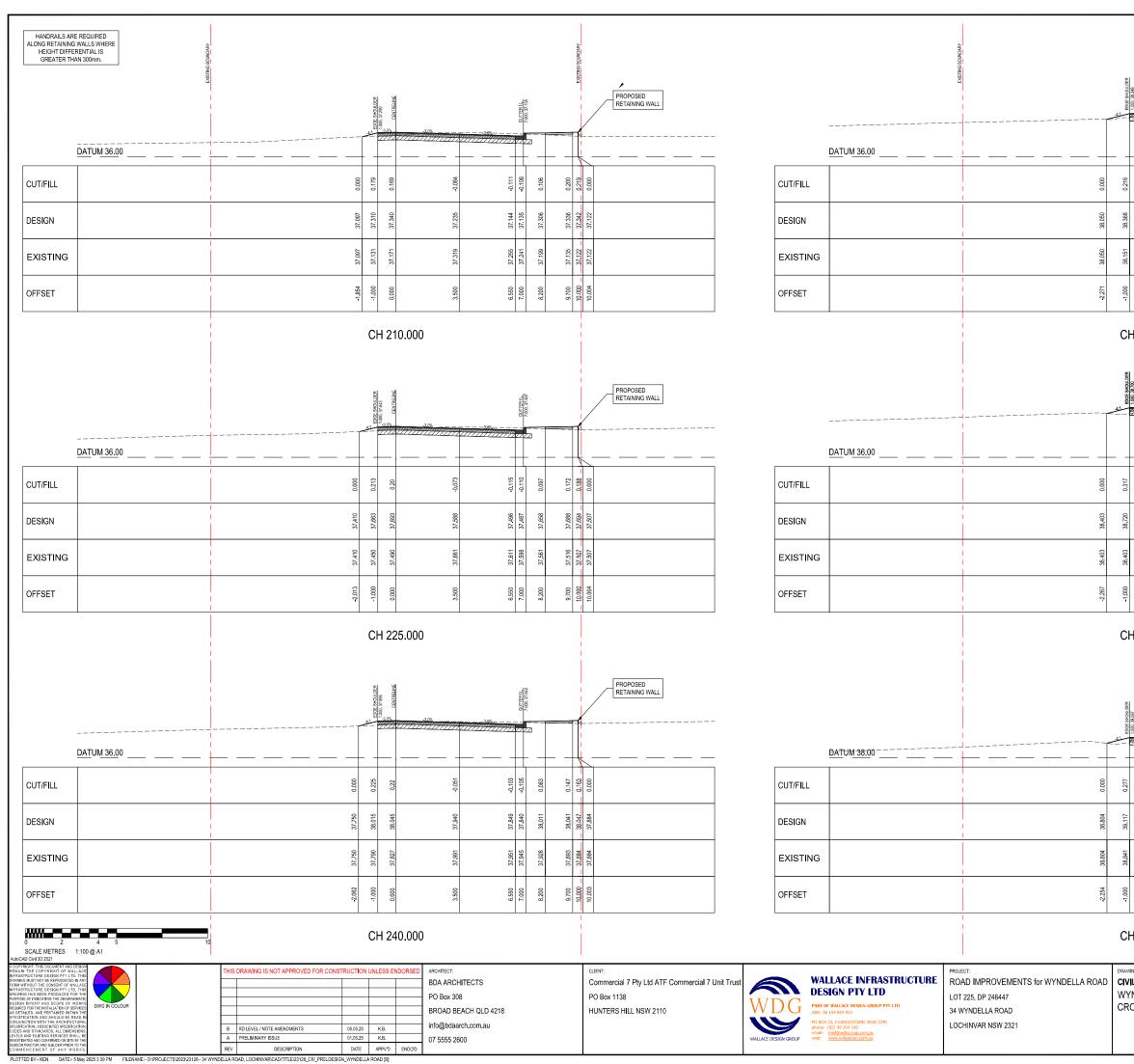
1 1 1000, 35.318	<u></u>	90% 	GUTTER I.L.				/	PROPOSED RETAINING WALL WITH HANDRAIL
 0.580	0.295	0.401	0.449	0.782	0.908	0.911	000:0	
 35.368	35.263	35.171	35.162	35.333	35,363	35.369	34,458	
 34.787	34 <u>.9</u> 67	34.770	34.714	34.551	34,455	34.458	34.458	
 0.000	3.500	6.550	7.000	8.200	9.700	10.000	10.018	
							_	

WING TITLE: VIL ROAD & SW PLANS	DRAWING STA	^{itus} F	PRELIMIN	ARY DESI	GN	
YNDELLA ROAD ROSS-SECTIONS (1 OF 6)	SCALE:	1:	100		ORIG. SIZE	.1
	DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE
	MS	KB	КВ	KB	-	05.05.25
	PROJECT No. 23128		C04			B



							EXISTING BOUNDARY		
EUGE SHOULUEK	, 1.000, 36.163	-30%		GUTTER I.L.	/000, 36,00/			PROPOSED RETAINING WALL WITH HANDRAIL	
		<u></u>						ř	_
0.544	0.212	090.0-	-0.014	0.014	0.282	0.431	0.452	0000	
00.100	36.213	36.108	36.016	36.007	36.178	36.208	36.214	35.762 35.762	
100.00	36.001	36.168	36.030	35,994	35.896	35.777	35.762	35.762 35.762	
0001-	0.000	3.500	6.550	7.000	8.200	9.700	10.000	10,009	

#### CH 165.000


EUGE SHUULDEK	CENTRELINE	-30%		GUTTER I.L.	7.000, 36.392			/	PROPOSED RETAINING WALL WITH HANDRAIL
		99999999999999999999999999999999999999		77					
0.5400	0.186	-0.079	-0.046	-0.018	0.252	0.406	0.429	0.000	
00,000	36.598	36.493	36.401	36.392	36.563	36.593	36.599	36,170	
00,000	36.412	36.571	36.448	36.411	36.311	36.188	36.170	36.170	
1 000	0.000	3.500	6.550	7.000	8.200	002'6	10.000	10.009	

### CH 180.000

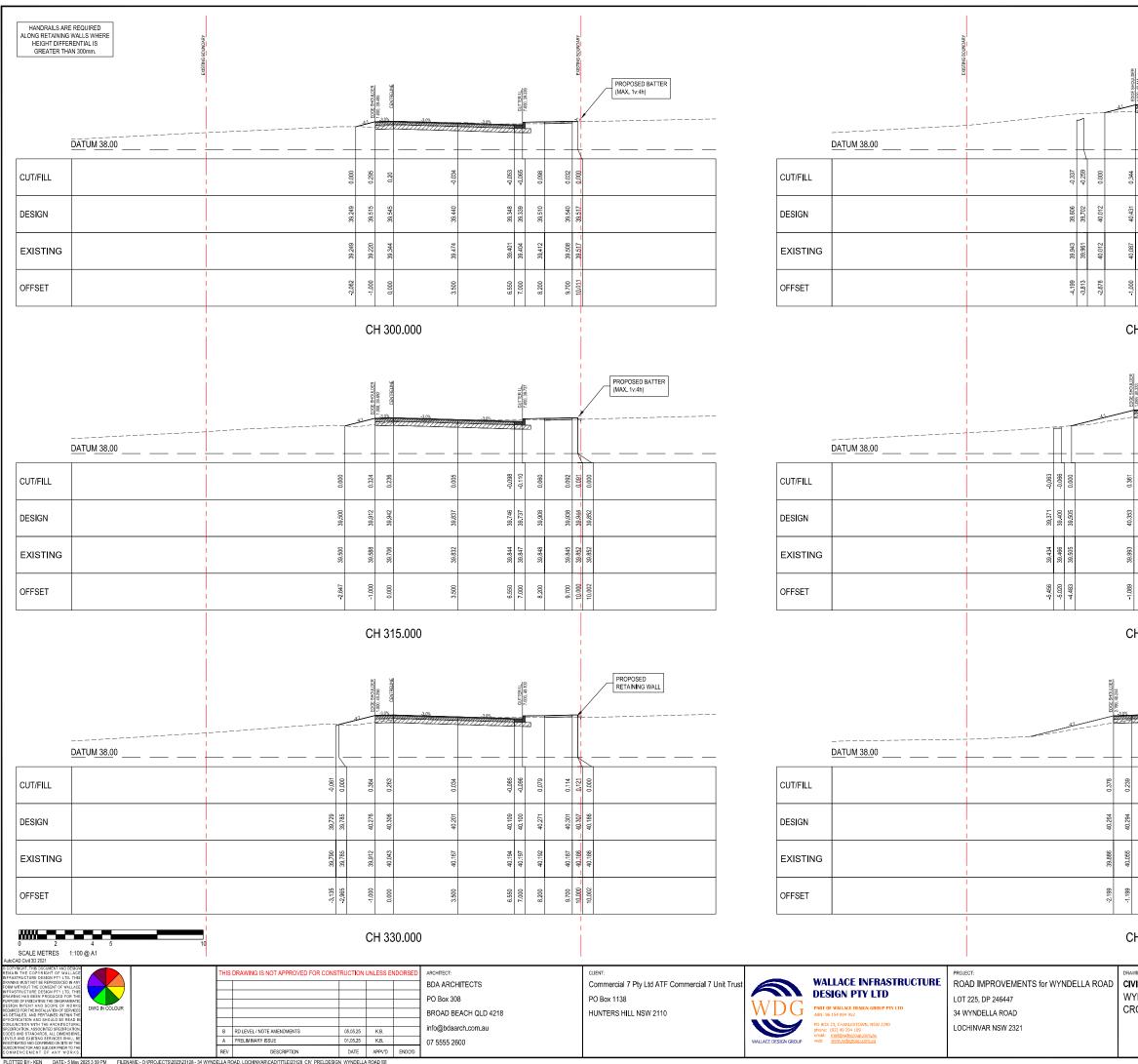
EDGE SHOULDER	CENTRELINE	900 <u>77777777777777777777777777777777</u> 		GUTTER I.L.	1 100, 36, 62			/	PROPOSED RETAINING WALL
0.100	0.164	-0.084	-0.088	-0.077	0.145	0.240	_ 0.271	0.000	
000000	36.988	36 <u>.883</u>	36.791	36.782	36.953	36.983	36,989	36.718	
11/00	36.824	36.967	36.879	36.860	36.808	36.743	36.718	36.718	
- 1.000	0.000	3.500	6.550	7.000	8.200	002.6	10.000	10.005	

### CH 195.000

ING TITLE: IL ROAD & SW PLANS	DRAWING STA	TUS F	PRELIMIN	ARY DESI	GN		
NDELLA ROAD OSS-SECTIONS (2 OF 6)	SCALE:	1:	100	ORIG. SIZE			
	DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE	
	MS	KB	КВ	KB	-	05.05.25	
	PROJECT No.		DRAWING	No.		REV	
	23128		C04	04		B	



EDGE SHOULDER	Centrelline		<u></u>	GUTTER IL. 7 000 38 600			EXISTING BOUNDARY	/	PROPOSED RETAINING WALL OR STABILISED BATTER.
2112	0.21	-0.047		-0.032	0.157	0.135	0.128	0000	
	38.398	38.293	38.201	38.192	38.363	38.393	38,399	38.271	
	38.189	38.339	38.231	38.224	38.207	38.259	38.271	38.271	
200-	0.000	3.500	6.550	7.000	8.200	9.700	10.000	10.003	


### CH 255.000

EUGE SHOULDER	, 1.000, 38.700 S CENTRELINE	30% 7117777777777777777777777777777777777	20v	GUTTER I.L.	GNG:80 '000' /		   	/	PROPOSED BATTER (MAX: 1v:4h)
				77	2			_	
100	0.18	720.0-	0.036	0.007	0.125	0.084	0.073	000	
04100	38.750	38.645	38.554	38.545	38.716	38.746	38.752	38.678	
001.00	38.565	38.702	38.518	38,538	38.591	38,662	38.678	38.678	
0001	0.000	3.500	6.550	7.000	8.200	6.700	10.000	10.001	

#### CH 270.000

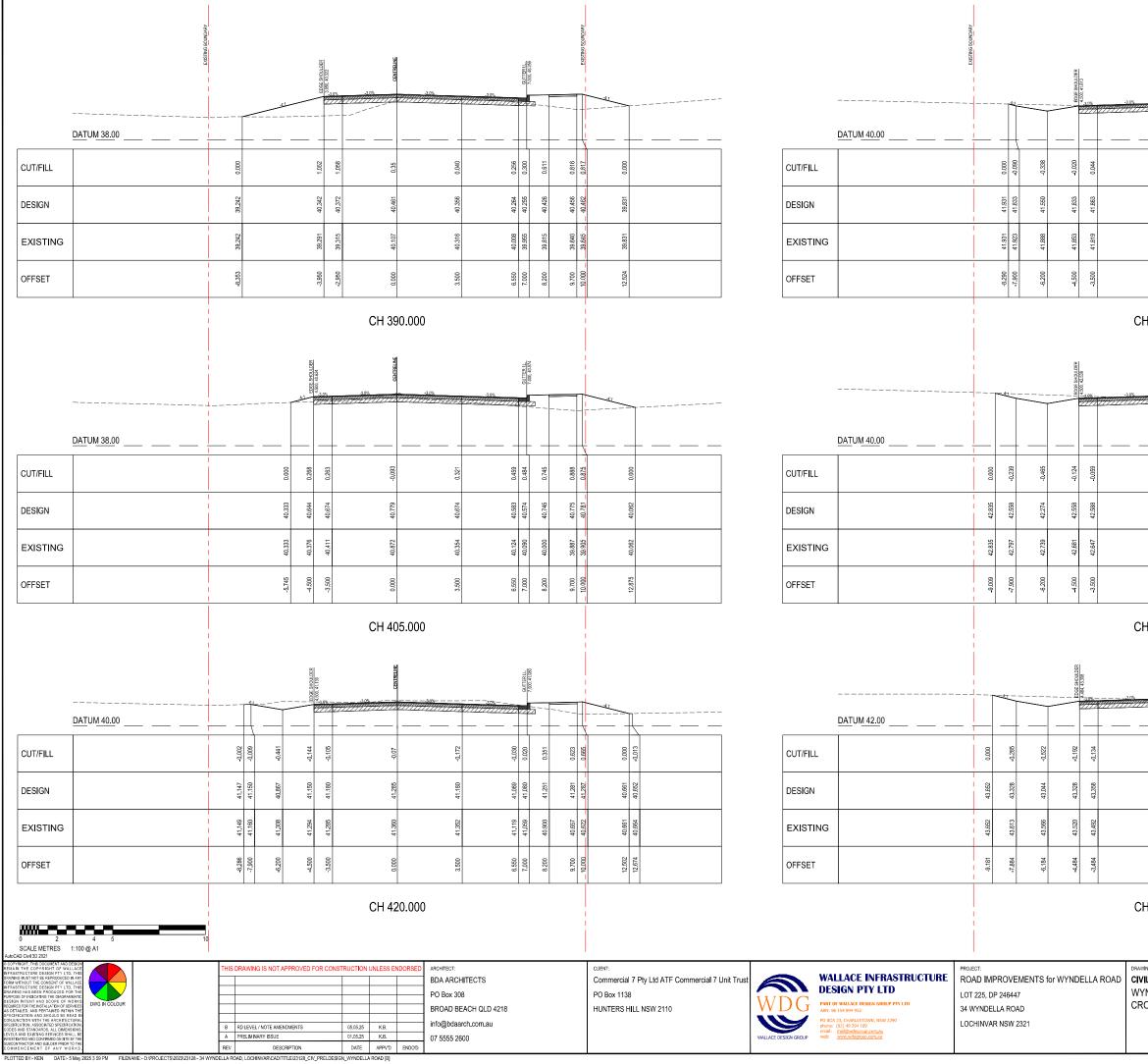
	CENTRELINE			GUTTER I.L.				PROPOSED BATTER (MAX_1v:4h)
							+	
	0.19	-0.054	0.020	-0.009	0.085	0.018	0.000	
	39.147	39.042	38.951	38.942	39.113	39.143	39.136	
	36	36	Ř	Ĩ	36	36	30	
	38.953	39 <u>.09</u> 6	38.931	38,951	39.028	39.125	39.136	
		0		9		g	2	
•	0:000	3.500	6.550	7.000	8.200	002.6	9.942	
ł	4 28	35.000						

WING TITLE: VIL ROAD & SW PLANS	DRAWING STA	^{itus} F	PRELIMIN	ARY DESI	GN	
YNDELLA ROAD ROSS-SECTIONS (3 OF 6)	SCALE:	1:	100		ORIG. SIZE	.1
	DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE
	MS	KB	KB	KB	-	05.05.25
	PROJECT No.		DRAWING	No.		REV
	23128		C04.	.05		В



	200,40.411 Compared Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commenter Commen			GUTTER I.L.			EXISTING BOUNDARY	PROPOSED RETAINING WALL OR 1v:4h BATTER
	0.176	0:126	020.0-	-0.042	0.080	0.036	0.031	00000
	40.461	40.356	40.264	40.255	40.426	40.456	40.462	40,431
2000	40.284	40.229	40.284	40.298	40.346	40,420	40.431	40,431
200	0.000	3.500	6.550	7.000	8.200	9.700	10.000	10,001

### CH 345.000


2 1089, 40.333	30 - 30% ////////////////////////////////////	2.01	GUTTER I.L.	/.000, 40, 180			the start	PROPOSED BATTER (MAX. 1v:4h)
21117			77					
0.218	0.039	-0.129	-0.164	-0.061	-0.135	0.146	000'0	
40.386	40.281	40.189	40.180	40.351	40.381	40.387	40.566	
40.168	40.242	40.318	40,344	40.413	40.516	40.534	40.566	
0.000	3.500	6.550	2.000	8.200	6.700	10.000	10.712	

#### CH 360.000

CENTRELINE			GUTTER I.L.				/	PROPOSED BATTER (MAX. 1v:4h)
11111	-3.0%	-3.0%		E		F	× -	
							_	
0.15	0.026	0.007	0.009	0.209	0.188	0.175	0000	
40.330	40.225	40.133	40.124	40.295	40.325	40.331	40.195	
40.184	40.198	40.126	40.115	40.087	40.137	40.156	40,195	
0.000	3.500	6.550	7.000	8.200	9.700	10.000	10,545	
H 37	<b>75 000</b>	<u> </u>						

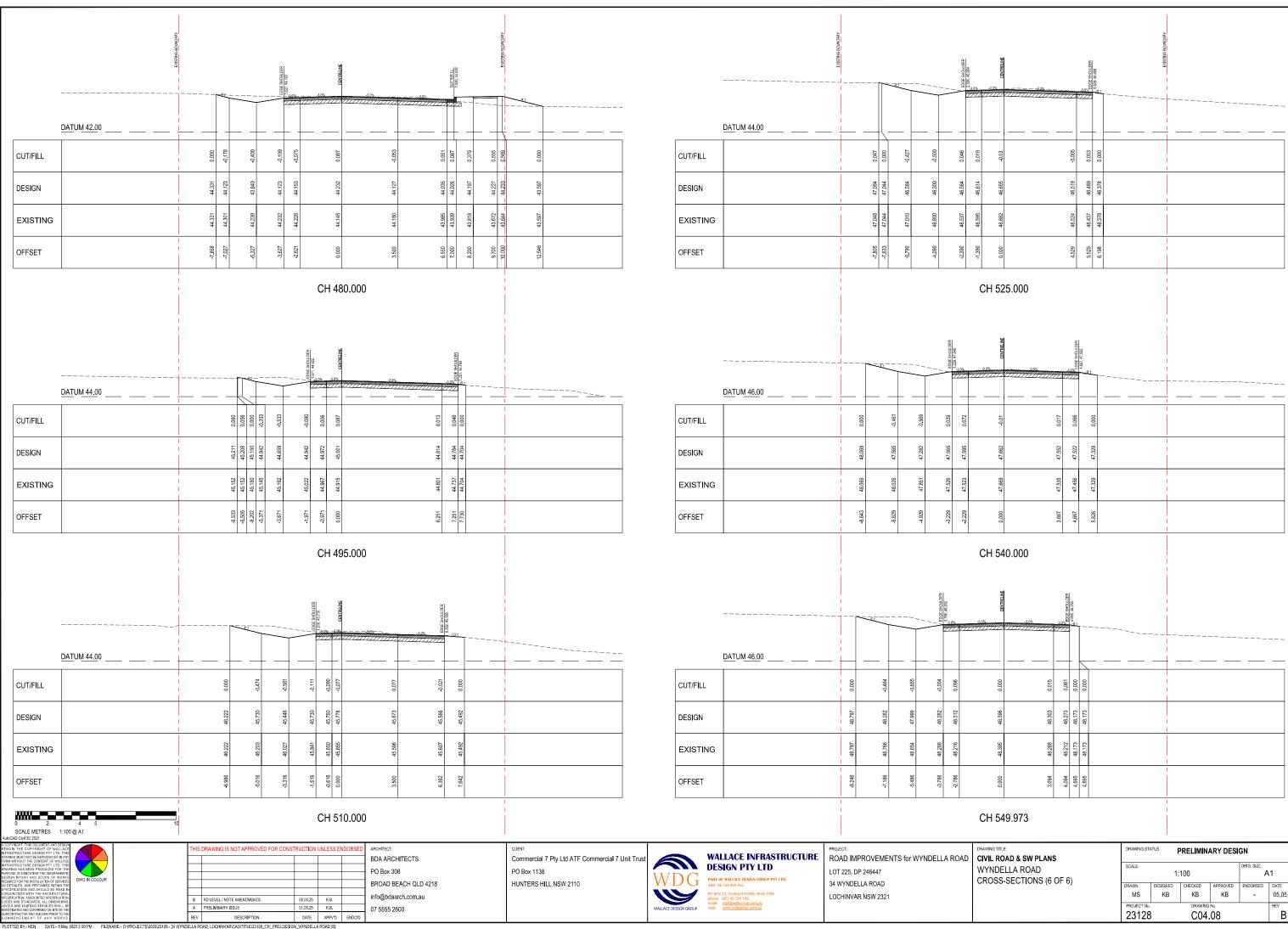
### CH 375.000

WING TITLE: VIL ROAD & SW PLANS	DRAWING STA	^{itus} F	PRELIMIN	ARY DESI	GN	
YNDELLA ROAD ROSS-SECTIONS (4 OF 6)	SCALE:	1:	100		ORIG. SIZE	.1
	DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE
	MS	KB	KB	KB	-	05.05.25
	PROJECT No.		DRAWING	No.		REV
	23128		C04.	.06		В



CENTRELINE			GUTTER I.L.			EXISTING BOUNDARY	41		
0.043	-0.085	0.047	0.095	0.412	0.620	0.661	00000	-0.049	
41.968	41.863	41.772	41.763	41.934	41.964	41.970	41,348	41.303	
41.925	41.948	41.724	41.668	41.522	41.344	41.308	41.348	41.352	
0.000	3.500	6.550	7.000	8.200	9.700	10.000	12.488	12.742	

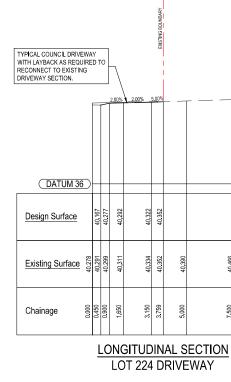
### CH 435.000


CENTRELINE			GUTTER I.L.	1.000, 42,487					
1111111	-3.0%		_				-4:1		
									·
0.10	-0.052	0.077	0.115	0.412	665'0	0.637	00000	-0.014	
42.693	42.588	42.496	42.487	42.658	42.688	42,694	42.027	42.013	
42.591	42.640	42.420	42.373	42.246	42.089	42.057	42.027	42.026	
0.000	3.500	6.550	7.000	8.200	6.700	10.000	12.670	12.746	

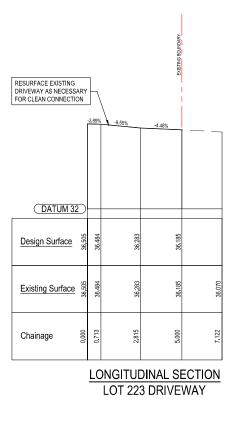
#### CH 450.000

CENTRELINE			GUTTER ILL.			   		
			///				41	
0.11	-0.041	0.103	0.143	0.443	0.634	0.672	0.000	
43.462	43.357	43.266	43.257	43.428	43.458	43.464	42.748	
43.357	43.398	43.163	43.114	42.985	42.824	42.791	42.748	
0.000	3.500	6.550	7.000	8.200	002.6		12.862	

#### CH 465.000

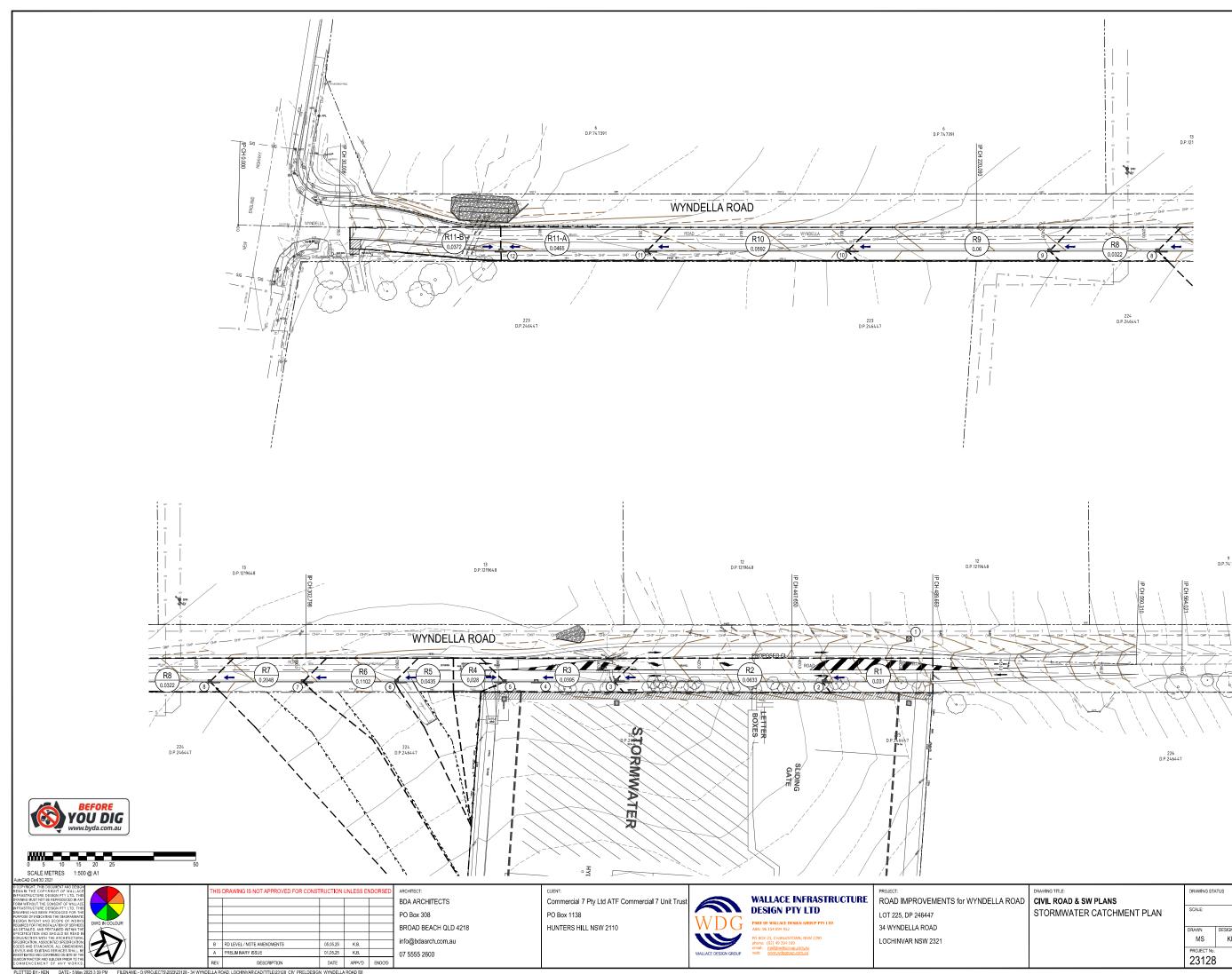

WING TITLE: VIL ROAD & SW PLANS	DRAWING STA	ARY DESI	GN			
YNDELLA ROAD ROSS-SECTIONS (5 OF 6)	SCALE:	1:	100	ORIG. SIZE		
	DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE
	MS	KB	КВ	KB	-	05.05.25
	PROJECT No.		DRAWING	No.		REV
	23128		C04.	.07		В



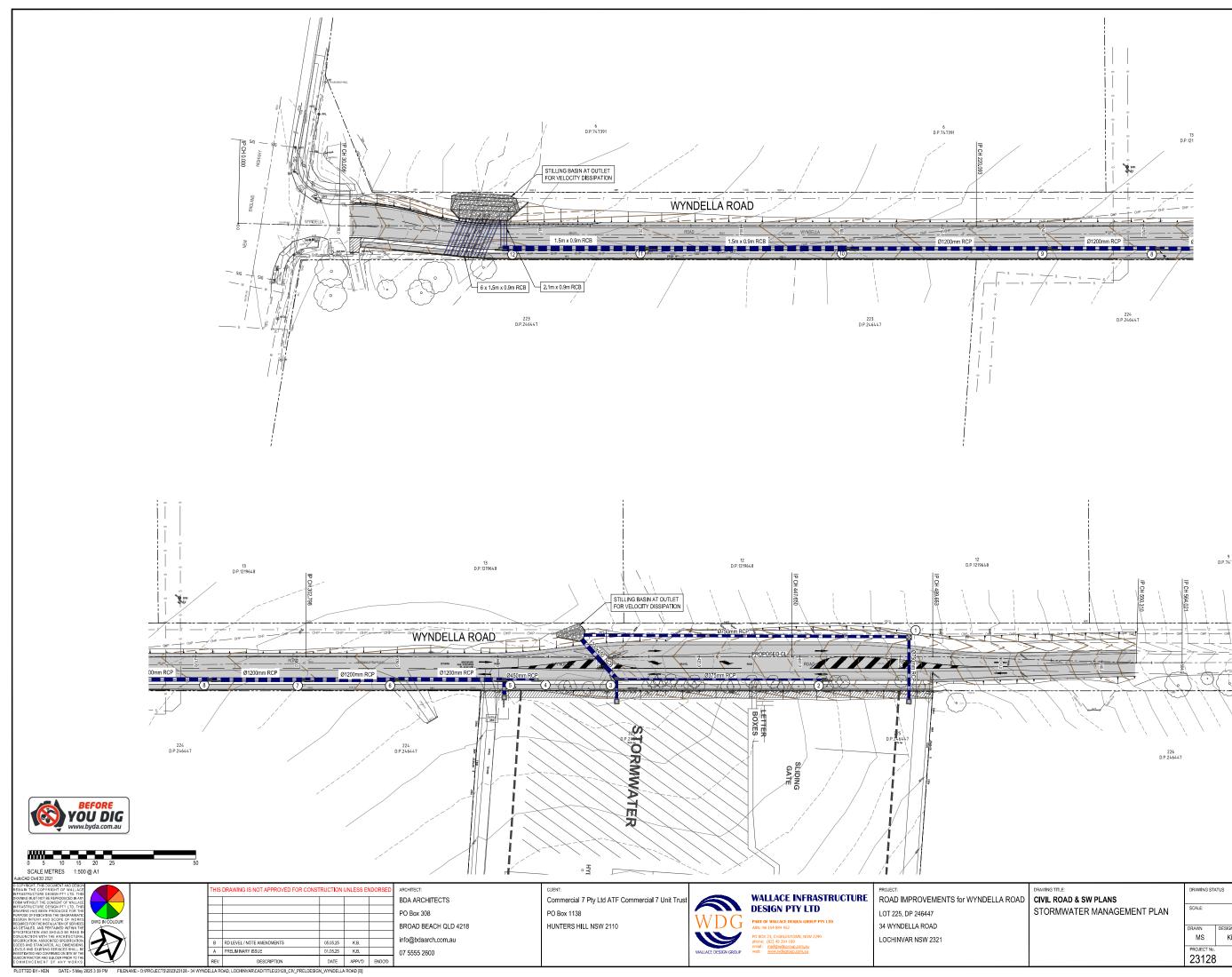

CENTRELINE	97777777799999999999999999999999999999	2005 SHOULDER	1 5529, 46.469	Element of the second sec
-0.03	-0.005	0.053	000.0	
46.655	46.519	46.489	46,378	
46.682	46.524	46.437	46.378	
0.000	4.529	5.529	6.198	

CENTRELINE	<del>7////////////////////////////////////</del>	EDGE SHOULDER	6 4.095, 48.253		
			-		
0.000	0.015	0.061	000.0	0.000	
48.396	48.303	48.273	48.173	48.173	
48.395	48.288	48.212	48.173	48.173	
0.000	3.094	4.094	4.695	4.695	

ING TITLE: IL ROAD & SW PLANS	DRAWING STATUS PRELIMINARY DESIGN									
NDELLA ROAD OSS-SECTIONS (6 OF 6)	SCALE:	1:	100	ORIG. SIZE						
	DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE				
	MS	KB	КВ	KB	-	05.05.25				
	PROJECT No.		DRAWING	No. RE		REV				
	23128		C04.	08		В				





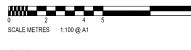



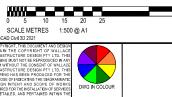



WING TITLE: VIL ROAD & SW PLANS	DRAWING STATUS PRELIMINARY DESIGN								
DT 223 AND 224 DRIVEWAY AND JSHFIRE ACCESS	SCALE:	1:	100		ORIG. SIZE A1				
	DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE			
ONGITUDINAL SECTIONS	MS	KB	КВ	KB	-	05.05.25			
	PROJECT No.		DRAWING	No.		REV			
	23128		C04.	09		В			



	DRAWING ST/	ARY DESI	ign			
ORMWATER CATCHMENT PLAN	SCALE:	1:	1:500			.1
	DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE
	MS	КВ	КВ	KB	-	05.05.25
	PROJECT No.		DRAWING	No.		REV
	23128	}	C05.	.01		В





WING TITLE: VIL ROAD & SW PLANS	DRAWING STA	^{itus} F	PRELIMINARY DESIGN				
FORMWATER MANAGEMENT PLAN	SCALE:	1:	1:500			ORIG. SIZE	
	DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE	
	MS	KB	КВ	KB	-	05.05.25	
	PROJECT No.		DRAWING	No.		REV	
	23128		C05.	02		В	

	DIT A	t 4 1 1 1 1					ວ					
		M						<u> </u>				PIT 12
	1	5L/:	s 1403L/s	1407L/s	1473L/s	1504L/s	1482L/s		1694L/s		1574L/s 1	554L/s
			m 1200mm	1200mm	1200mm	1200mm	1200mm		1.5 x 0.9m		1.5 x 0.9m2.1	
	6	.859		1.00%	2.41%	2.36%	2.40%		1.27%	-	1.00% 1	1.28%
			tum El. 20									
	38.933	38.793	38.695 38.428	38.375 38.004	37.957 37.337	37.295 36.576	36.529	34.979	34.935	34.200	34.149 33.755	33.356 33.612
1	Level	39.959	40.001	39.957	39.315	38.645	37.885		36.442		35.332	34.929 33.12
	Level	38.850 38.200	38.050 37.729	37.729 37.450	37.296 36.627	36.627 35.866	35.866	34.428	34.428	33.666	33.666 33.230	33.230 33.120
)		0	9.49	41.61	69.51	97.28	129.52		189.52		249.52	293.12 301 72

LINE 4 TO OUTFALL - 10%AEP 1:500 (H): 1:100 (V)

LINE 4 TO OUTFALL - 1%AEP 1:500 (H): 1:100 (V)





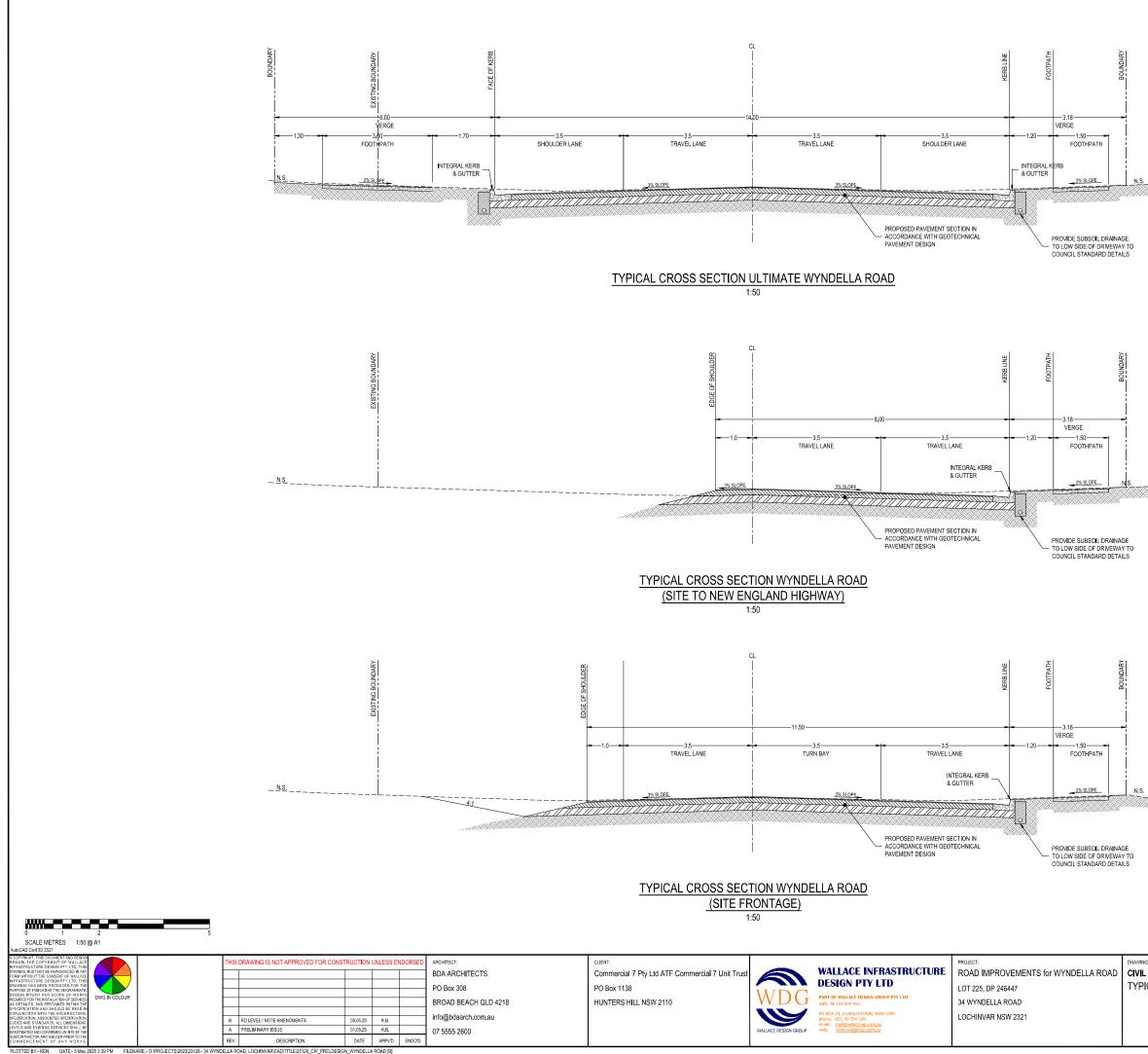
HIS DRAWING IS NOT APPROVED FOR CONSTRUCTION UNLESS ENDORS ARCHITECT: PO Box 308 
 Conduction with the 4-softer truits.
 B
 ROLEVEL / NOTE AMENDMENTS
 05.95.25
 K.B.

 VP113 MOL BRING STRUCTS SEVENTATION, CODES AND STRUCTS SEVENTATION, CODES AND STRUCTS SEVENTATION, SUBJECT AND SEVENT SEVENT SEVENT SUBJECT AND SEVENT SEVENT SEVENT SEVENT SEVENT SUBJECT AND SEVENT SEVENT SEVENT SEVENT SEVENT SUBJECT AND SEVENT SEVENT SEVENT SEVENT SEVENT SEVENT SUBJECT AND SEVENT 05.05.25 K.B. 01.05.25 K.B. 07 5555 2600 DATE APPV'D ENDO'D

BDA ARCHITECTS BROAD BEACH QLD 4218 info@bdaarch.com.au

Commercial 7 Pty Ltd ATF Commercial 7 Unit Trus PO Box 1138 HUNTERS HILL NSW 2110

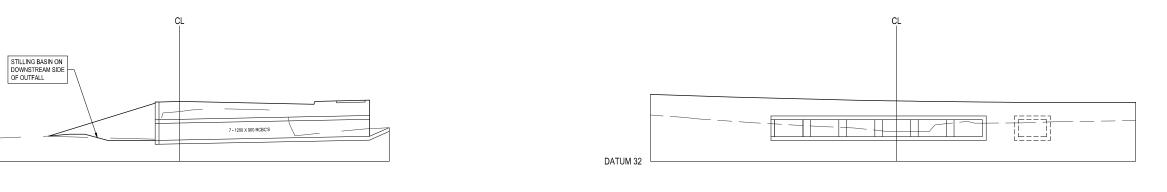
CLIENT:




WALLACE INFRASTRUCTURE WALLAUE IN DAY. DESIGN PTY LTD PART OF WALLACE DESIGN GROUP PTY LTD ABN: 96 154 894 952 PO BOX 23, CHARLESTOWN, NSW 2290 phone: (02) 49 294 109 email: <u>mail@wdegroup.com.au</u> web: <u>www.wdegroup.com.au</u>

PROJECT: ROAD IMPROVEMENTS for WYNDELLA ROAD CIVI ST LOT 225, DP 246447 SEC 34 WYNDELLA ROAD LOCHINVAR NSW 2321

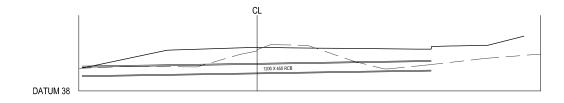
ŀ		ດ 			r H		c H	2 2 2	c H	ה חור		c	D						
4	21L/ 50m .85°	m 1200mr	n	2865 1200 1.00	)mm	2923I 1200n 2.41	nm	1:	2991L/s 200mm 2.36%		3009L/s 1200mm 2.40%	>	<	3029L/s 1.5 x 0.9m 1.27%		3045L/s 1.5 x 0.9r 1.00%	n2.1	74L/: x 0 9 .28%	)m
HGL	39.744 g	tum El. 20 197.68	39.085	38.657	38.440	38.234	37.777	37.576	37.020	36.818		36.000	35.615		35.379	34.990	34.817	34.615 34.600	
Surface Level	39.959	40.001		39.957		39.315		38.645		37.885			36.442			35.332		34.929 33.12	23. 12
Invert Level	38.200 38.850	38.050	37.729	37.729	37.450	37.296	36.627	36.627	35.866	35.866		34.428	34.428		33.666	33.666	33.230	33.230 33.120	
Chainage	0	9.49		41.61		69.51		97.28		129.52			189.52			249.52		293.12	21.100


WING TITLE: VIL ROAD & SW PLANS	DRAWING STATUS PRELIMINARY DESIGN							
FORMWATER LONGITUDINAL ECTIONS	SCALE:	AS	SHOWN	ORIG. SIZE A1				
	DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE		
	MS	KB	КВ	KB	-	05.05.25		
	PROJECT No.		DRAWING	No.		REV		
	23128		C05.	03		В		

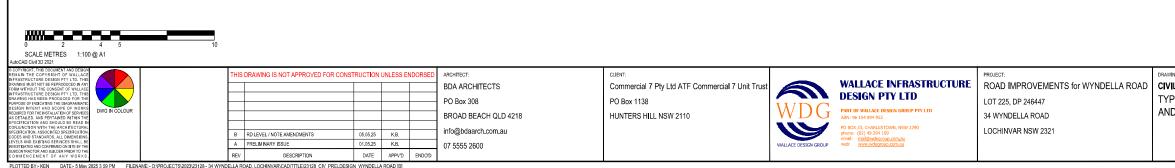


s.____

s.


ING TITLE: IL ROAD & SW PLANS	DRAWING STATUS PRELIMINARY DESIGN										
PICAL ROAD SECTIONS	SCALE:	1:5	50		ORIG. SIZE						
	DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE					
	MS	КВ	KB	KB	-	05.05.25					
	PROJECT No.		DRAWING	No.		REV					
	23128	3	C06	.01		В					




TYPICAL CULVERT No. 1 LONGITUDINAL SECTION

DATUM 32

TYPICAL CULVERT No. 1 CROSS-SECTION INLET SIDE



TYPICAL CULVERT No. 1 LONGITUDINAL SECTION AT CENTRELINE OF CULVERT



VING TITLE: IL ROAD & SW PLANS	DRAWING STATUS PRELIMINARY DESIGN								
PICAL CULVERT SECTIONS D DETAILS	SCALE:	1:1	00		A1				
DETALLO	DRAWN	DESIGNED	CHECKED	APPROVED	ENDORSED	DATE			
	MS	KB	КВ	KB	-	05.05.25			
	PROJECT No.		DRAWING	No.		REV			
	23128		C06.	02		В			