Site Classification Investigation

Client: Stanford

Designer:

Agility Job No: 2025193

Designer Job No:

Site Address: No.8 Allan Street, Lorn

Your home designs

 Fieldwork Date:
 14/04/2025
 Fieldwork By:
 JH

 Reported By:
 JH
 Reviewed By:
 MS

Site Details

Slope Direction: Flat Existing Fill: <0.4m

Slope Grade: <5% Exist Site Development: Yes

Vegetation: Developed Site with Gardens

Borehole BH1 Location: See site plan

Depth	Depth Material		Moisture
0.0 - 0.2	TOPSOIL: Sandy SILT, lp, dark, f-m sand		SM/M
0.2 - 0.7	Silty CLAY, lp, dark grey (alluvial soil)	St	М
0.7 - 1.0	Sandy SILT/Silty SAND, lp, grey (alluvial soil)	L-MD	М
1.0	Hand auger borehole terminated (limit of investigation)		

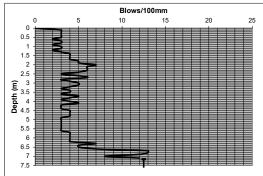
XW Rock Depth: NE

Equipment: 75mm ø hand auger

Borehole BH2 Location: See site plan

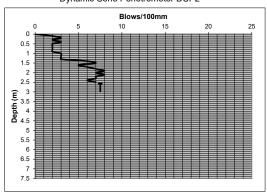
Depth	Material	Density	Moisture
0.0 - 0.2	TOPSOIL: Sandy SILT, lp, dark, f-m sand		SM/M
0.2 - 0.8	Silty CLAY, lp, dark grey (alluvial soil)	St	М
0.8 - 1.0	Sandy SILT/Silty SAND, lp, grey (alluvial soil)	L-MD	М
1.0	Hand auger borehole terminated (limit of investigation)		

XW Rock Depth: NE


Equipment: 75mm ø hand auger

Borehole Key

Moisture D=Dry, SM=Some Moisture, M=Moist, W=Wet


Rock NE=Not Encountered, XW=Extremely Weathered, HW=Highly Weathered

Dynamic Cone Penetrometer DCP1

Location: BH1

Dynamic Cone Penetrometer DCP2

Location: BH2

R = REFUSED T = TERMINATED

Wind Classification (AS4055 - 2021)

Region Terrain Category Topographic Class Shielding Classification Calculated Wind Classification

N2	l
N2	l
FS	1
T1	1
TC2	1
Region A	l

Recommended Wind Classification

Note: Wind Classification shown herein is based on estimates of the future terrain category and shielding for this site in five (5) years time

Tree Score Effect

	Canopy	Medium
Tree Characteristics	Height	>15m
Tree Characteristics	Stage of Growth	Growing
	Drought Resistant	Resistant
0 1 100	Depth of Fill	<1m
Ground and Site Conditions	Adverse Conditions	Yes
Conditions	Soil Profile Reactivity	Moderate

Tree Score Effect

High

Site Classification

Depth Suction, Hs Shrink Swell Index. Iss

Characteristic Surface Movement, Ys

Foundation Design to*

2.3
Unable to Test
Unable to Test
Class M

* - based on estimated characteristic surface movement Ys value for existing site conditions only

Site Classification

Class P

Class P Classification due to

Adverse moisture conditions due to presence of trees

General Notes

A copy of Agility Engineering's General Notes and CSIRO BFT18 - Foundation Maintenance and Footing Performance can be seen attached.

Comments

All footings should be uniformly founded on material of similar stiffness, below all topsoil, slopewash and uncontrolled fill. High level footings founded on stiff or better alluvial clay should be proportioned for a maximum allowable bearing capacity of 100kPa. Footings/piles founded on medium dense alluvial sand/very stiff alluvial clay should be proportioned for a maximum allowable bearing capacity of 200kPa (expected to be encountered from approximately 2m below ground level). Alternatively, screw piles or timber driven mini-piles should be designed and proportioned by an experienced professional. Not in a mine subsidence area.

TITLE: **Approximate Test Location Plan (Not To Scale)**

CLIENT: Stanford

ADDRESS: No.8 Allan Street, Lorn

AGILITY JOB No: 2025193 DATE: 14/04/2025

Geotechnical General Notes

Introduction

These notes have been provided in order to explain your geotechnical report. Not all elements are necessarily relevant to all reports.

Geotechnical Report

This geotechnical report is based on information gained from personal local experience, understanding of local geology, limited site investigation, subsurface sampling and/or laboratory testing. This report is tailored to provide information relevant to the scope of the project. Agility have performed the geotechnical investigation in general accordance with current professional and industry standards.

The extent of testing was limited to discrete test locations and variations that cannot be inferred or predicted may occur in ground conditions between test locations. To the best of our knowledge, information presented in this report represents a reasonable interpretation of the general condition of the site. Under no circumstances, however, do these findings represent the actual state of the site at all points. For this reason, this report must be regarded as interpretive rather than as a factual document as the report is limited by the scope of information on which interpretations are based upon. Site access constraints such as existing dwellings, steep sloping sites, dense vegetation and underground services may limit the understanding of the sub-surface profile across the site.

This geotechnical engineering report is based on conditions which existed at the time of subsurface exploration. Without approval from Agility Engineering, this report should not be used if there are any changes to the scope of the project or changes to the site conditions. Construction operations at or adjacent to the site and natural events such as floods, earthquakes or groundwater fluctuations may also affect subsurface conditions and thus, the reliability of this geotechnical report. Without consultation, Agility Engineering will not accept responsibility for problems that occur due to project modifications and/or site modifications. The programme of field sampling, laboratory testing and interpretations presented within this report are limited in nature and Agility Engineering does not assume liability for site conditions not accessible during the time of the investigation.

Agility Engineering should be contacted immediately should subsurface conditions be found to differ from those described in this report.

Engineering Logs

The engineering logs (borehole, test pit logs presented in this report are a geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

- In low permeability soils, groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;
- A localised, perched water table may lead to an inaccurate indication of the true water table;
- Water table levels will vary from time to time with seasons, weather and/or tidal events. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable groundwater observations may be made by installing piezometer standpipes which may be monitored over variable extended timeframes.

Tree Effects

Due to complex tree root geometry, variable moisture extraction by trees and the difficulty in predicting future tree growth, a precise design for the effects of trees is outside current knowledge. The owner must be aware that although precautions have been taken for the effects of trees in our design, some distortion must be accepted. Engineers are not experts in tree growth and cannot be expected to know the anticipated growth and mature height of trees.

Site Inspection

Agility Engineering will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Copyright

This report remains the property of Agility Engineering. The report may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Soil & Rock Classification

Description and Classification Methods

The description and classification of soils and rocks used within this report are based on descriptions and classifications detailed in Australian Standard AS 1726:2017.

Soil Types

AS 1726:2017 defines soil as particulate materials that occur in the ground and can be disaggregated or remoulded by hand in air or water without prior soaking. The dominant soil component is given capital letters and secondary and minor soil components are given lower case letters. FILL and TOPSOIL are also given block letters and are indicated at the beginning of the soil description.

Particle Size of Soil Components

article Size of Son Components		
	Туре	Particle size (mm)
	BOULDERS	>200
	COBBLES	63 - 200
	GRAVEL Course	19 - 63
_	GRAVEL Medium	6.7 - 19
Coarse grained soil	GRAVEL Fine	2.36 – 6.7
	SAND Course	0.6 – 2.36
	SAND Medium	0.21 - 0.6
	SAND Fine	0.075 - 0.21
p *	SILT	0.002 - 0.075
Fine grained soil*	CLAY	<0.002

^{*} Fine grained soils to be described from engineering behaviour by visual tactile techniques

Fine Grained Soil Plasticity

Soil plasticity is characterised from the liquid limit of silts and clays. When laboratory tests are not available, plasticity is estimated using field visual and tactile methods.

Diasticity	Liquid limit Liquid lim		
Plasticity	for silt	for clay	
Non-plastic	Not applicable	Not applicable	
Low plasticity	≤50	≤35	
Medium plasticity	Not applicable	>35, ≤50	
High plasticity	>50	>50	

Course Grained Soil Particle Characteristics

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded one or more intermediate sizes poorly represented
- Gap graded one or more intermediate sizes absent
- Uniform an excess of a particular particle size

Where significant, particle shape can be defined as being rounded, sub-rounded, sub-angular, angular, flaky, platy or elongated.

Moisture Condition

Soil Type	Moisture Condition	Description
	Dry (D)	Non-cohesive and free running
Course	Moist (M)	Soil cool, darkened and sticks
grained	IVIOISE (IVI)	together
soil	Wet (W)	Soil cool dark, free water forms
		when handling
	w <pi< td=""><td>Soil dryer than plastic limit, hard</td></pi<>	Soil dryer than plastic limit, hard
	WVFL	and friable or powdery
Fine	w~PL	Soil near plastic limit, can be
grained	W PL	moulded
soil		Soil wetter than plastic limit, soil
	w >PL	usually weakened, free water forms
		when handling

Cohesive Soil Consistency

Cohesive soils include fine grained soils and coarse grained soils with sufficient fine grained components to induce cohesive behaviour. Consistency describes the ease with which a soil can be remoulded measured by the indicative undrained shear strength of the soil or assessed by field tests.

undrained shear strength of the son of assessed by held tests.			
	Undrained shear		
Abbreviation	strength		
	(kPa)		
VS	<12		
S	12 - 25		
F	25 - 50		
St	50 - 100		
VSt	100 - 200		
Н	>200		
Fr	-		
	Abbreviation VS S F St VSt H		

Relative Density of Non-Cohesive, Coarse Grained Soils

Non-cohesive soils are classified on the basis of relative density, generally assessed from penetration test procedures and well-established correlations.

Relative Density	Abbreviation	Density Index %
Very loose	VL	<15
Loose	L	15 - 35
Medium Dense	MD	35 - 65
Dense	D	65 - 85
Very Dense	VD	>85

Rock Classification

The rock type is given in capital letters followed by the grain size, colour, fabric and texture of the rock. The degree of weathering and the rock material strength classification are provided. Where no point load strength index or laboratory testing was undertaken, rock strength will be estimated using field assessment techniques in accordance with AS 1726:2017 or estimated from drilling resistance.

FOUNDATION MAINTENANCE AND FOOTING PERFORMANCE

Understanding and preventing soil-related building movement

This Building Technology Resource is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking.

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the home owner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

SOIL TYPES

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. Table 1 below is a reproduction of Table 2.1 from Australian Standard AS 2870-2011, Residential slabs and footings.

CAUSES OF MOVEMENT

SETTLEMENT DUE TO CONSTRUCTION

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed on its foundation soil, as a result of compaction of the soil under the weight of the structure. The cohesive quality of clay soil mitigates against this, but granular (particularly sandy) soil is susceptible.
- ▶ Consolidation settlement is a feature of clay soil and may take place because of the expulsion of moisture from the soil or because of the soil's lack of resistance to local compressive or shear stresses. This will usually take place during the first few months after construction but has been known to take many years in exceptional cases.

These problems may be the province of the builder and should be taken into consideration as part of the preparation of the site for construction.

EROSION

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

SATURATION

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume, particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

SEASONAL SWELLING AND SHRINKAGE OF SOIL

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below, from AS 2870). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

SHEAR FAILURE

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- ▶ Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.

In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

TREE ROOT GROWTH

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

 Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.

TABLE 1. GENERAL DEFINITIONS OF SITE CLASSES.

Class	Foundation
А	Most sand and rock sites with little or no ground movement from moisture changes
S	Slightly reactive clay sites, which may experience only slight ground movement from moisture changes
М	Moderately reactive clay or silt sites, which may experience moderate ground movement from moisture changes
H1	Highly reactive clay sites, which may experience high ground movement from moisture changes
H2	Highly reactive clay sites, which may experience very high ground movement from moisture changes
E	Extremely reactive sites, which may experience extreme ground movement from moisture changes

Source: Reproduced with the permission of Standards Australia Limited © 2011. Copyright in AS 2870-2011 Residential slabs and footings vests in Standards Australia Limited.

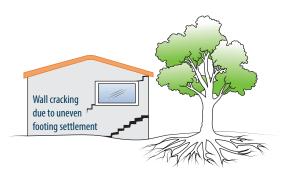


FIGURE 1 Trees can cause shrinkage and damage.

 Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

UNEVENNESS OF MOVEMENT

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- ▶ Differing compaction of foundation soil prior to construction.
- ▶ Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure.

Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior through absorption. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Shrinkage usually begins on the side of the building where the sun's heat is greatest.

EFFECTS OF UNEVEN SOIL MOVEMENT ON STRUCTURES

EROSION AND SATURATION

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

SEASONAL SWELLING/SHRINKAGE IN CLAY

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers

and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the external footings. The doming is accentuated, and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry, and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

MOVEMENT CAUSED BY TREE ROOTS

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

COMPLICATIONS CAUSED BY THE STRUCTURE ITSELF

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

EFFECTS ON FULL MASONRY STRUCTURES

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also

exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

EFFECTS ON FRAMED STRUCTURES

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation causes a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

EFFECTS ON BRICK VENEER STRUCTURES

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

WATER SERVICE AND DRAINAGE

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem. Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

- Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.
- ▶ Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing largescale problems such as erosion, saturation and migration of water under the building.

SERIOUSNESS OF CRACKING

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. Table 2 below is a reproduction of Table C1 of AS 2870-2011.

AS 2870-2011 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

PREVENTION AND CURE

PLUMBING

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

GROUND DRAINAGE

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.

It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject may be regarded as an area for an expert consultant.

PROTECTION OF THE BUILDING PERIMETER

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving should extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill.

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

CONDENSATION

In buildings with a subfloor void, such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

TABLE 2. CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS.

Description of typical damage and required repair	Approximate crack width limit	Damage category
Hairline cracks	<0.1 mm	0 — Negligible
Fine cracks which do not need repair	<1 mm	1 — Very Slight
Cracks noticeable but easily filled. Doors and windows stick slightly.	<5 mm	2 – Slight
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired.	5—15 mm (or a number of cracks 3 mm or more in one group)	3 – Moderate
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted.	15—25 mm but also depends on number of cracks	4 – Severe

Source: Reproduced with the permission of Standards Australia Limited © 2011. Copyright in AS 2870-2011 Residential slabs and footings vests in Standards Australia Limited.

Warning: Although this Building Technology Resource deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders, and mould.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

THE GARDEN

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

EXISTING TREES

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

INFORMATION ON TREES, PLANTS AND SHRUBS

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information.

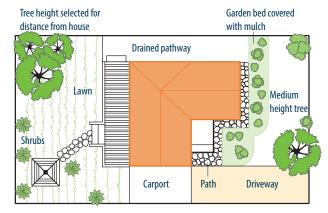


FIGURE 2 Gardens for a reactive site.

EXCAVATION

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

REMEDIATION

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the home owner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

1300 788 000 | +61 3 9545 8400 | publishing.sales@csiro.au | www.publish.csiro.au
For information about CSIRO testing services visit www.csiro.au/en/work-with-us/services
ISBN 9781486312962 (print)/9781486312979 (digital) © CSIRO 2021
(replaces Building Technology File 18, 18-2011 and Information Sheet 10/91)
Unauthorised copying of this material is prohibited.

IMPORTANT DISCLAIMER: This information is prepared for Australia and general in nature. It may be incomplete or inapplicable in some cases.

Laws and regulations may vary in different places. Seek specialist advice for your particular circumstances.

To the extent permitted by law, CSIRO excludes all liability to any person for any loss, damage, cost or other consequence that may result from using this information.