

TRAFFIC & PARKING ASSESSMENT

CHILD CARE CENTRE

LOT 228 DP1096131, LOT 1 DP784404 & LOT 1 DP779130 29 – 33 CESSNOCK ROAD, GILLIESTON HEIGHTS

PREPARED FOR: APPROVED PTY LTD

AMENDED AUGUST 2025

REF: 24/025

TRAFFIC AND PARKING ASSESSMENT

CHILD CARE CENTRE APPROVED PTY LTD

LOT 228 DP1096131, LOT 1 DP784404 & LOT 1 DP779130 29 – 33 CESSNOCK ROAD, GILLIESTON HEIGHTS

Intersect Traffic Pty Ltd (ABN: 43 112 606 952)

Address:

16 Mount Harris Drive Maitland Vale NSW 2320 PO Box 268 East Maitland NSW 2323

Contact:

(Mob) 0423 324 188

Email: jeff@intersecttraffic.com.au

QUALITY ASSURANCE

This document has been prepared, checked, and released in accordance with the Quality Control Standards established by Intersect Traffic Pty Ltd.

Issue	Date	Description	Ву
Α	29/05/24	Draft	JG
В	31/05/24	Edit	JG
С	03/06/24	Final Proof	JG
D	03/06/24	Approved	JG
E	08/12/24	Amended Plans	JG
F	12/08/25	Amended Plans / Approved	JG

Copyright © Intersect Traffic Pty Ltd

This document has been authorised by

Date 12th August 2025

Disclaimer

This report has been prepared based on the information supplied by the client and investigation undertaken by Intersect Traffic Pty Ltd & other consultants. Recommendations are based on Intersect Traffic's professional judgement only and whilst every effort has been taken to provide accurate advice, Council and any other regulatory authorities may not concur with the recommendations expressed within this report. This document and the information are solely for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or part for any purpose other than that for which it was supplied by Intersect Traffic Pty Ltd. Intersect Traffic makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or the information.

Confidentiality Statement

All information, concepts, ideas, strategies, commercial data, and all other information whatsoever contained within this document as well as any and all ideas and concepts described during the presentation are provided on a commercial in confidence basis and remain the intellectual property and Copyright of Intersect Traffic Pty Ltd and affiliated entities.

C	ONTENTS			FIGURES	
1.	INTRODUCTION		1	Figure 1 – Site Location	2
•			•	Figure 2 – Local Bus Routes 164 &166	8
2.	SITE DESCRIPTION		2	Figure 3 – Development traffic trip distributio	n.
3.	EXISTING ROAD NETWORK		4		12
	3.1 Cessnock Road (MR195)	4		PHOTOGRAPHS	
	3.2 Redwood Drive	4		Photograph 1 – Existing site and vehicular	
	3.3 Heyes Street	5		accesses from Cessnock Road.	3
4.	ROAD NETWORK IMPROVEMENTS		6	Photograph 2 – Existing site and vehicular	
5.	TRAFFIC VOLUMES		6	access from Heyes Street.	3
			•	Photograph 3 – Cessnock Road along site	
6.	ROAD CAPACITIES		6	frontage.	4
7.	ALTERNATIVE TRANSPORT MODES		8	Photograph 4 – Redwood Drive near Cessno	ock
8.	DEVELOPMENT PROPOSAL		11	Road.	5
^	TRAFFIC OFNERATION & DISTRIBUTION		44	Photograph 5 – Springfield Drive near New	
9.	TRAFFIC GENERATION & DISTRIBUTION		11	England Highway.	5
10.	TRAFFIC IMPACTS OF DEVELOPMENT		12	Photograph 6 – Cessnock Road bus stop so	
	10.1 – Road Network and Intersection Capac	city		of site (Davies Street).	9
	·	12		Photograph 7 – Cessnock Road footpath alo	-
	10.2 – Site Access	14		site frontage.	9
	10.3 – On-Site Car Parking	14		Photograph 8 – Off-road shared pathway	
	10.4 – Site servicing	15		eastern side of Cessnock Road.	10
	10.5 - Construction Traffic	15		Photograph 9 – Signalised Cessnock Road	
11.	ALTERNATIVE TRANSPORT MODE FACIL	ITIES	16	pedestrian crossing at Heyes Street.	10
12.	CONCLUSIONS		16	TABLES	
12.			10	Table 1 – Existing and future two-way mid-bl	lock
13.	RECOMENDATION		17	traffic volume data.	6
Λ	DDENDICEC			Table 2 – Two-way mid-block capacity	
A	PPENDICES			assessment.	13
				Table 3 – Cessnock Rd / Redwood Dr / Heye	es
APP	ENDIX 1 DEVELOPME	NT PLA	INS	St Signals – Sidra Modelling – Results	
APP	ENDIX 2 TRAFFIC CO	UNT DA	ΛTA	Summary	14
APP	ENDIX 3 SIDRA MOVEMENT SUMMAR	RY TABL	.ES		

1. INTRODUCTION

Intersect Traffic Pty Ltd has been engaged by Approved P/L to prepare a Traffic and Parking Assessment Report for a proposed Child Care Centre on Lot 228 DP1096131, Lot 1 DP784404 & Lot 1 DP779130, 29 – 33 Cessnock Road, Gillieston Heights. The site currently contains three residential dwellings all fronting Cessnock Road. The child care centre will operate as long day care centre operating between 6.00 am and 6.30 pm Mondays to Fridays and will cater for up to 128 children with approximately 25 staff. Vehicular access to the development's on-site car park will be via a combined entry / exit driveway from Heyes Street. The proposed development plans for the site are provided within *Appendix 1*.

The aim of this assessment is to determine the likely impact of the proposal on the adjacent existing local and state road network as a result of the additional traffic generated by the development. This report presents the findings of the traffic and parking assessment and includes the following:

- 1. An outline of the existing road network in the vicinity of the proposed development.
- 2. An assessment of the likely peak traffic generation from the development.
- 3. An assessment of the likely traffic impacts of the proposal on the adjacent road network in particular in regard to the capacity of the existing road network.
- 4. An assessment of the proposed development access and on-site parking.
- 5. An assessment of the impact of the development on alternate transport mode services and facilities in the vicinity of the site.
- 6. Presentation of conclusions and any recommendations.

2. SITE DESCRIPTION

The subject site is located on the western side of Cessnock Road, Gillieston Heights immediately north of Heyes Street. It is immediately west of the Gillieston Heights local shopping village and approximately 4.3 km south-west of the Maitland CBD area. *Figure 1* below shows the site amidst the residential developments, roads, and commercial surrounds.

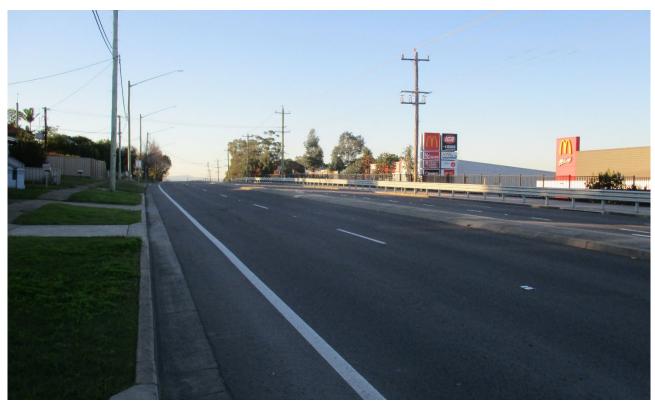
Figure 1 – Site Location

Currently the site contains the following property descriptors:

- Formal land title of Lot 228 DP1096131, Lot 1 DP784404 & Lot 1 DP779130.
- Street address of 29 -33 Cessnock Road, Gillieston Heights.
- Total development site area of approximately 3,042 m²; and
- Land zoning of R1 General Residential pursuant to Maitland LEP (2011).

The site currently contains three residential dwellings as shown in **Photograph 1**. These dwellings currently are serviced by single residential vehicular access crossing from Cessnock Road while 33 Cessnock Road which is on the corner of Cessnock Road and Heyes Street also has a single residential access crossing from Heyes Street to the rear of the property as shown in **Photograph 2**. All four existing vehicular accesses to the site will be removed as part of the development works.

Photograph 1 – Existing site and vehicular accesses from Cessnock Road.


Photograph 2 – Existing site and vehicular access from Heyes Street.

3. EXISTING ROAD NETWORK

3.1 Cessnock Road (MR195)

Cessnock Road is a classified state road (MR195) and operates as a sub-arterial road under a functional road hierarchy providing access between Maitland to the north and Kurri Kurri and Cessnock to the south-west. Cessnock Road also provides a connection for both towns to the Hunter Expressway (M15) which provides access to further destinations i.e. Newcastle and Singleton. As a classified state road Cessnock Road is under the care and control of Transport for NSW (TfNSW). Near the site Cessnock Road is a four-lane two-way road with additional turning lanes at major intersections between upright kerb and gutter with on on-road cycleway along the western side of the road and an off-road shared pathway along the eastern side of the road adjacent to the local shopping village. On-street parking along the site frontage is prohibited with a clearway in operation and lane widths over the proposed development frontage vary between 3.0 and 3.5 metres. A speed limit of 60 km/h is in force at this location and at the time of inspection, Cessnock Road was observed to be in excellent condition (*Photograph 3*).

Photograph 3 – Cessnock Road along site frontage.

3.2 Redwood Drive

Redwood Drive is a local collector road under the care and control of Maitland City Council with its primary function distributing traffic from the eastern part of Gillieston Heights to the sub-arterial road network as well as providing vehicular access to properties on its length. In the vicinity of the site, it is a two-lane two-way sealed urban road between kerb and gutter with additional turning lanes at Cessnock Road. The total sealed carriageway width is approximately 10 metres wide allowing some on-street car parking along its length. A 50 km/h speed limit applies to this section of road and at the time of inspection Redwood Drive in the vicinity of the site was observed to be in good condition (see **Photograph 4**). Redwood Drive intersects with Cessnock Road and Heyes Road via a signalised four-way cross intersection.

Photograph 4 – Redwood Drive near Cessnock Road.

3.3 Heyes Street

Heyes Street is a local collector road under the care and control of Maitland City Council with its primary function distributing traffic from the western part of Gillieston Heights to the sub-arterial road network as well as providing vehicular access to properties on its length. In the vicinity of the site, it is a two-lane two-way sealed urban road between kerb and gutter with additional turning lanes at Cessnock Road. The total sealed carriageway width is approximately 9 metres wide allowing some on-street car parking along its length. A 50 km/h speed limit applies to this section of road and at the time of inspection Heyes Street in the vicinity of the site was observed to be in fair condition (see *Photograph 5*). Heyes Street intersects with Cessnock Road and Redwood Drive via a signalised four-way cross intersection.

Photograph 5 – Springfield Drive near New England Highway.

4. ROAD NETWORK IMPROVEMENTS

Future upgrades to the road network will occur as the Gillieston Heights area develops with major new residential areas expected to develop to the west and south of the site. This will include the widening of Cessnock Road further north and south of the development to increase the capacity of Cessnock Road as well as the construction of a number connecting intersections to Cessnock Road with high levels of intersection control.

Maintenance of Cessnock Road, Heyes Street and Redwood Drive will be undertaken by Maitland City Council in line with Maitland City Council and TfNSW maintenance programs.

5. TRAFFIC VOLUMES

Intersect Traffic undertook intersection traffic counts at the Cessnock Road / Redwood Drive / Heyes Street signalised intersection during likely AM and PM peak traffic periods. These counts were undertaken on Tuesday 28^{th} May 2024 (PM peak) and Wednesday 29^{th} May 2024 (AM peak) and the peak hour periods counted were 8 am -9 am and 3 pm to 4 pm. The count results sheets are provided in **Attachment B**.

The resulting existing 2024 two-way mid-block traffic volumes extracted from this data and the predicted 2035 two-way mid-block traffic volumes predicted from this data using a 2 % p.a. background traffic growth rate, as currently recommended by TfNSW for the Maitland LGA, are as shown in *Table 1* below.

Table 1 – Existing and future two-way mid-block traffic volume data.

Road	Section	202	24	2035 @ 2% p.a.		
		AM (vtph)	PM (vtph)	AM (vtph)	PM (vtph)	
Cessnock Road	north of Redwood Drive	1438	1424	1788	1771	
Cessnock Road	south of Redwood Drive	1598	1481	1987	1841	
Redwood Drive	east of Cessnock Road	523	469	650	583	
Heyes Street	west of Cessnock Road	53	88	66	109	

These current and future baseline traffic volumes without development have been adopted in this assessment.

6. ROAD CAPACITIES

The capacity of urban roads is generally determined by the capacity of intersections. However, Table 4.3 of the *RTA*'s *Guide to Traffic Generating Developments* provides some guidance on mid-block capacities for urban roads for a level of service C (LoS C). This table is reproduced below.

From this table Cessnock Road being a four-laneway two-way undivided road with clearway conditions would have a one-way capacity of 1,800 vtph or a two-way road capacity of at least 3,600 vtph on the basis a LoS C is considered satisfactory. However, as a sub-arterial road it is still acceptable for Cessnock Road to have a (LoS) D with one lane capacities of at least 1,100 vtph. Therefore, Cessnock Road is considered to have a two-way mid-block capacity of at least 4,400 vtph.

Redwood Drive being a two-lane two-way local collector road also providing vehicular access to the local shopping village would have a one-way capacity of 900 vtph and a two-way capacity of 1,800 vtph for a satisfactory LoS C.

Table 4.3
Typical mid-block capacities for urban roads with interrupted flow

Type of Road	One-Way Mid-block Lane C	Capacity (pcu/hr)
Median or inner lane:	Divided Road	1,000
Median of mile falle.	Undivided Road	900
	With Adjacent Parking Lane	900
Outer or kerb lane:	Clearway Conditions	900
	Occasional Parked Cars	600
4 lane undivided:	Occasional Parked Cars	1,500
4 lane undivided.	Clearway Conditions	1,800
4 lane divided:	Clearway Conditions	1,900

Source: - RTA's Guide to Traffic Generating Developments (2002).

As Heyes Street only provides access to residential dwellings the environmental capacity of the road is the governing capacity threshold. The environmental capacity thresholds are provided in *Figure* **4.6** of the RTA's *Guide to Traffic Generating Developments* (2002) reproduced below.

Table 4.6 Environmental capacity performance standards on residential streets

Road class	Road type	Maximum Speed (km/hr)	Maximum peak hour volume (veh/hr)				
	Access way	25	100				
Local	Stroot	40	200 environmental goal				
	Street	40	300 maximum				
Collector	Street	50	300 environmental goal				
Collector	Street	50	500 maximum				

Note: Maximum speed relates to the appropriate design maximum speeds in new residential developments. In existing areas maximum speed relates to 85th percentile speed.

Source: - RTA's Guide to Traffic Generating Developments (2002).

Based on this table Heyes Street would have an environmental capacity of up to 500 vtph.

Therefore, the local and state road network capacities adopted in this assessment are.

- Cessnock Road 3,600 vtph.
- Redwood Drive 1,800 vtph; and
- Heyes Street 500 vtph.

As existing traffic volumes as shown in **Section 5** are below these capacity thresholds it is reasonable to conclude that the existing state and local road network has spare capacity to cater for additional development in the area.

7. ALTERNATIVE TRANSPORT MODES

Rover Motors bus routes 164 (Cessnock to Maitland) and 166 (Kurri Kurri to Maitland) provide a public transport (bus) connection between Maitland and Cessnock / Kurri Kurri. Route 164 runs along Cessnock Road past the site while Route 166 turns at Redwood Drive and runs through the Sadlers Ridge Estate connecting back to Cessnock Road via Scenic Drive. The nearest bus stops to the site are located on Cessnock Road at Davies Street (northbound) 75 metres south of the site (see **Photograph 6**) and at Oakwood Village (southbound) approximately 230 metres north of the site both within convenient walking distance of the site. Bus stops also exist on Redwood Drive for Route 166 near Pine Street approximately 300 metres east of the site. These services provide a regular 1-hour service (45 minutes during peak hours) in the weekday and weekend AM and PM periods. The service connects the site to the residential areas of Cessnock, Kurri Kurri and Heddon Greta as well as the retail, commercial, health and transport (rail) hubs in Maitland and would be of some benefit for staff of the development.

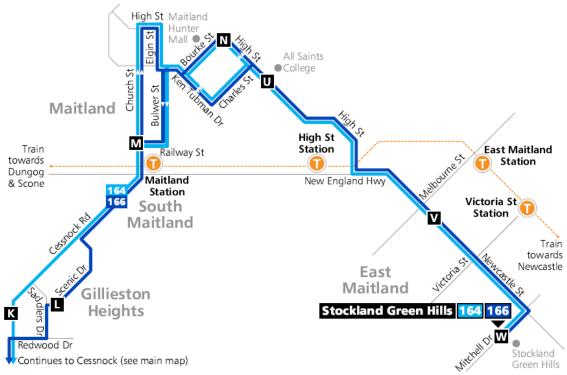
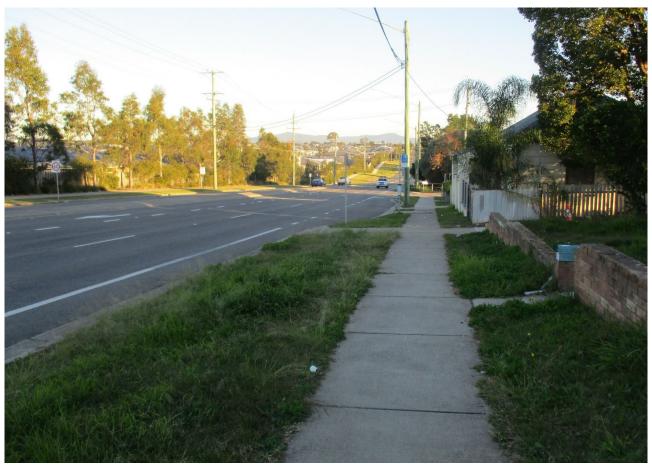



Figure 2 – Local Bus Routes 164 &166

There are constructed concrete pedestrian footpaths along the western side of Cessnock Road from Russell Street through to Fanning Street covering most of the Cessnock Road frontage through Gillieston Heights (see *Photograph 7*). An off-road shared concrete pathway (see *Photograph 8*) runs along the eastern side of Cessnock Road from the southern outskirts of Gillieston Heights past the site to William Street. Maitland City Council has plans to extend this cycleway to the current Gillieston Heights to Maitland shared off road pathway which currently ends at Fanning Street. The 300-metre missing link will be constructed when funding is available. There are also on-road cycle lanes on the western side of Cessnock Road through the township as well as on the eastern side of Cessnock Road where there is no off-road shared pathway. Safe pedestrian crossing of Cessnock Road, Redwood Drive and Heyes Street near the site is available through the pedestrian phases within the Cessnock Road / Redwood Drive / Heyes Street signalised intersection (see *Photograph 9*). Overall, except for in Heyes Street the pedestrian and cycleway infrastructure servicing the site is excellent.

Photograph 6 – Cessnock Road bus stop south of site (Davies Street).

Photograph 7 – Cessnock Road footpath along site frontage.

Photograph 8 – Off-road shared pathway eastern side of Cessnock Road.

Photograph 9 – Signalised Cessnock Road pedestrian crossing at Heyes Street.

8. DEVELOPMENT PROPOSAL

The proposed development involves the construction of a long day child care centre with associated on-site car parking for staff and the dropping off and picking up of children by parents. The centre will operate between 6.00 am and 6.30 pm Mondays to Fridays. The proposed development plans are provided within *Appendix 1*. Specifically, the proposal includes the following:

- Construction of a child care building for 128 children with the following age splits;
 - -0-2 years -24 children.
 - -2-3 years -34 children.
 - 3 4 years 40 children; and
 - 4 5 years 30 children.
- Reception area, kitchen, Director's office, laundry, staff facilities and amenities.
- Outdoor play area.
- On-site car parking for staff and parents totalling 32 spaces with 1 accessible space; and
- Combined entry / exit driveway 6 metres wide to Heyes Street with the driveway being 45 metres west of Cessnock Road.

9. TRAFFIC GENERATION & DISTRIBUTION

TfNSW's Guide to Transport Impact Assessment provides guidance on traffic generation rates for various land uses. The following advice is provided with regard to Child Care Centres.

Table 5.59. Child care centre sample summary

	Long day care centre	Pre-school	Occasional care	Outside school hours care (OSHC)	All (excl. OSHC)
Weekday rates	Avg	Avg	Avg	Avg	Avg
Person trips (p	erson trips/lice	nsed child plac	es)		
Site AM peak hour	0.85	1.08	0.77	0.47	0.89
Site PM peak hour	0.83	1.03	0.84	0.49	0.89
Network AM peak hour	0.66	1.09	0.73	0.08	0.81
Network PM peak hour	0.39	0.60	0.06	0.28	0.36
Daily	3.07	2.50	1.83	1.51	2.52
Vehicle trips (v	ehicle trips/lice	ensed child plac	ces)		
Site AM peak hour	0.81	0.86	0.63	0.38	0.77
Site PM peak hour	0.80	0.76	0.78	0.43	0.78
Network AM peak hour	0.64	0.83	0.63	0.07	0.69
Network PM peak hour	0.39	0.51	0.06	0.23	0.33
Daily	2.97	1.96	1.65	1.30	2.27

Therefore, the potential traffic generation from the child care centre during the road network peak periods can be calculated as follows (rounded up).

AM peak

 $PVT = 0.64 \times 128 = 82 \text{ vtph}$

PM peak

$$PVT = 0.39 \times 128 = 50 \text{ vtph}$$

In distributing this traffic onto the state and local road network the following assumptions are made.

- The centre will equally attract traffic from the residential areas to the north, south, east and west of the site therefore 25% of traffic will have origin / destinations along all of Cessnock Road (north and south), Redwood Drive and Heyes Street.
- In both the AM and PM peak there will be 50 % inbound and 50 % outbound trips.

The resulting likely peak hour traffic distribution for development traffic is therefore calculated and shown in *Figure 3* below.

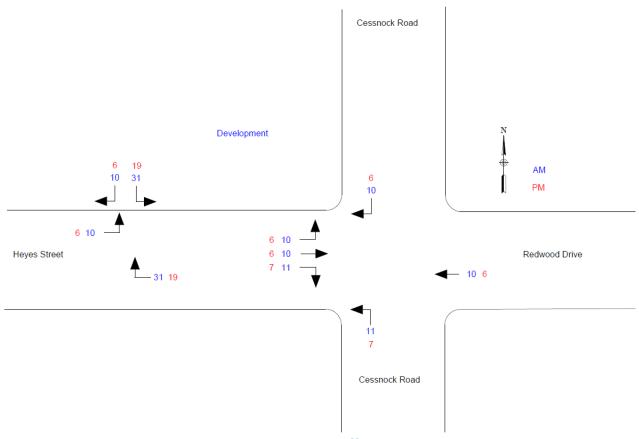


Figure 3 – Development traffic trip distribution.

10. TRAFFIC IMPACTS OF DEVELOPMENT

10.1 – Road Network and Intersection Capacity

It has previously been shown in **Section 6** of this report that the adjoining road network is currently operating within its technical and environmental two-way mid-block capacity. Section 9 determined the proposed development will generate 82 vtph in the AM peak and 50 vtph in the PM peak traffic periods. This traffic is distributed as shown in **Figure 3** above and does not result in the two-way mid-block road capacity thresholds being reached as demonstrated in **Table 2** below. Therefore, it

is concluded that the proposed development does not adversely impact on mid-block traffic flow on the state and local road networks.

Table 2 – Two-way mid-block capacity assessment.

Road	Section	202	.4 2)35	Capacity	Development Traffic	
		AM (vtph)	PM (vtph)	AM (vtph)	PM (vtph)	(vtph)	AM (vtph)	PM (vtph)
Cessnock Road	north of Redwood Drive	1445	1424	1795	1771	4400	20	12
Cessnock Road	south of Redwood Drive	1607	1484	1996	1844	4400	22	14
Redwood Drive	east of Cessnock Road	529	469	656	583	1800	20	12
Heyes Street	west of Cessnock Road	101	114	114	135	500	62	38

The main intersection impacted by the development will be the Cessnock Road / Redwood Drive / Heyes Street signalised cross intersection. To determine the impact of the development on this intersection it has been modelled using the Sidra Intersection modelling program. This software package predicts likely delays, queue lengths and thus levels of service that will occur at intersections. Assessment is then based on the level of service requirements of TfNSW shown below in Table 4.2 below. Assumptions made in this modelling were:

- The intersection layout will remain as per current conditions.
- Traffic volumes used in the modelling were as described in **Section 5** with the assessment years being 2024 and 2035.
- A background traffic growth rate of 2% per annum has been adopted as recommended for the Maitland LGA region by TfNSW.
- To ensure the cumulative impacts of residential developments west of the site are included in this assessment a background traffic growth rate of 3 % per annum has been adopted for Heyes Street; and
- Traffic generated by the development is distributed as per Figure 3.

Table 4.2
Level of service criteria for intersections

Level of Service	Average Delay per Vehicle (secs/veh)	Traffic Signals, Roundabout	Give Way & Stop Signs				
Α	< 14	Good operation	Good operation				
В	15 to 28	Good with acceptable delays & spare capacity	Acceptable delays & spare capacity				
С	29 to 42	Satisfactory	Satisfactory, but accident study required				
D	43 to 56	Operating near capacity	Near capacity & accident study required				
E	57 to 70	At capacity; at signals, incidents will cause excessive delays	At capacity, requires other control mode				
		Roundabouts require other control mode					

Source: - RTA's Guide to Traffic Generating Developments (2002).

The summarised 'all vehicles' results of the modelling are provided in *Table 3* below. The Sidra Movement Summary Tables for each model are provided in *Appendix 3*.

Modelled Peak	Cycle Time (s)	Degree of Saturation (v/c)	Average Delay (s)	Level of Service	95% back of queue length (cars)
2024 AM	55	0.682	17.6	В	11.6
2024 PM	65	0.612	15.4	В	13.0
2024 AM + development	55	0.698	18.1	В	12.1
2024 PM + development	65	0.612	15.7	В	13.0
2035 AM + development	60	0.820	21.2	В	19.2
2035 PM + development	60	0.838	19.5	В	21.6

Table 3 – Cessnock Rd / Redwood Dr / Heyes St Signals – Sidra Modelling – Results Summary

The modelling shows the current signalised intersection operates satisfactorily during the AM and PM peak periods and will continue to do so post development through to at least 2035. The impact of the development is minor with no loss of LoS resulting from the development. Therefore, it is reasonable to conclude the development does not adversely impact on the operation of this intersection and as development traffic is further diluted through the road network will not adversely impact on the operation of intersections on the wider state and local road network.

10.2 - Site Access

The proposed development is serviced by a combined entry / exit driveway 6 metres wide which is consistent with a Category 2 Driveway. This access will service a 32-space car park for Class 1 employee and Class 3 short term parking accessed off a local road therefore in accordance with Table 3.1 of AS2890.1-2004 is required to be a Category 2 access. Table 3.2 of AS2890.1-2004 identifies a Category 2 access as a combined entry / exit driveway between 6 to 9 metres wide. The proposed access arrangement therefore is compliant with a Category 2 access.

With Heyes Road being a 50 km/h road the required vehicular sight lines from the access needs to be a minimum 45 metres or 69 metres desirable. The sight distance to the proposed driveway would be in excess of minimum 50 metres which would be compliant with the Australian Standard. The requirements for pedestrian sight lines within *AS2890.1-2004* can be ensured through conditioning of the consent to ensure no walls, fencing or landscaping above 1.2 metres high exists within the pedestrian sight triangle required by *AS2890.1-2004*.

With through two-way traffic volumes on Heyes Street being a maximum of 161 vtph in 2034 and with right and left turning traffic into the site being a maximum of 40 vtph and 13 vtph respectively a turn lane warrant assessment at the entry access in accordance with Figure 3.25 of Austroads *Guide to Traffic Management – Part 6 – Intersections, Interchanges and Crossings Management* determines that the site access need only be a BAR / BAL layout i.e. no turning lanes are required.

Overall, it is concluded that the proposed access arrangements to the development are satisfactory being suitably safe and would comply with the requirements of Australian Standards and Austroads.

10.3 – On-Site Car Parking

On-site parking and manoeuvrability should comply with Australian Standard *AS2890.1-2004* Parking facilities – Part 1 - Off-street car parking and Maitland City Council's DCP (2011) – Part C11 – Vehicular access & parking. The parking provision rates applicable for the development taken from the DCP are.

Child Care Centre

1 space per 4 children in attendance or part thereof.

Therefore, the likely peak parking demand (DCP compliant) generated by this development is calculated as follows.

DCP Parking requirement = 128 / 4 = 32 car spaces.

With the proposed development providing 32 car spaces on the site, the development is compliant with the Council DCP requirement. In considering the car parks compliance with AS2890.1 – 2004 the following design detail is noted as scaled from the drawings which will need to be confirmed at CC stage.

- Car spaces are a minimum of 2.6 metres wide x 5.4 metres long.
- Minimum aisle width of 6.6 metres has been provided.
- The blind aisle layout has been provided with a 1-metre-wide blind aisle extension at the dead end as well as a dedicated turning area ensuring suitable convenient manoeuvring through the site.
- A clearly defined footpath and stairs/ramp from the car park to the building entry has been provided within the car park; and
- As there is a no parking zone along the Heyes Street frontage of the site associated with the signals operation there is no nexus from this development for the provision of a footpath along the Heyes Street frontage of the site. An internal footpath connection to the existing Cessnock Road footpath has been provided in the development.

Therefore, on review it is determined that the proposed car parking design is compliant with AS2890.1-2004 and that overall suitable and sufficient on-site car parking has been provided within the development.

10.4 - Site servicing

In terms of servicing of the site it should be noted that as a child care centre:

- Most consumables are purchased by staff and transported to site within private light vehicles.
- Waste collection has been designed as an on-site collection by private contractor standing within the car park during non-operating hours for the child care centre so as to not interfere with the drop-off and pick-up of children. The collection vehicle enters the site in a forward direction into the car park spaces near the waste area and collects with a front-loading collection vehicle before reversing in the car park aisle and leaving in a forward direction; and
- Other deliveries to the site will be infrequent (once or twice a day) using smaller light vehicles who can use the vacant car parks during non-peak drop off and pick up times. All these deliveries would occur outside the peak parking demand periods for the child care centre and will not conflict with the majority of child drop off and pick up traffic movements. No separate service bay for these deliveries is required.

Overall, it is concluded the use of the site turning bay or vacant car spaces for servicing during nonoperating periods of the child care centre or even outside the peak drop off and pick up times for the centre will ensure suitably safe and convenient servicing of the child care centre will occur.

10.5 - Construction Traffic

The construction of the development will result in additional traffic entering and exiting the site. It is estimated that during the peak construction periods up to 15 construction employees will be on-site at any one time. If a car occupancy rate of 1.2 is assumed for employee traffic this would result in an AM and PM peak traffic flow to the site of in the order of 13 vtph. This of course will also increase the peak parking demand at the site by a similar number during construction.

Material deliveries will add to this traffic with peak materials delivery traffic expected during the pouring of concrete slabs within the construction period. It is likely that a further 5 vtph could occur during the AM peak period as a result of this construction activity. Therefore overall, it is estimated that the peak construction traffic generation resulting from the construction of the development will be in the order of up to 18 vtph during the AM peak or PM peak traffic periods. This is still significantly

less than the operational traffic generation from the site and thus would not adversely impact on the local road network.

Construction traffic is a short-term traffic impact that is best managed through the preparation of a construction traffic management plan prepared and implemented by the building contractor prior to commencement of construction activities. This plan may seek to minimise the impacts of construction activities by designating travel routes, access points, construction employee parking areas, material delivery procedures and times etc. This plan is best prepared, implemented and enforced by the head contractor. It is recommended that a construction traffic management plan be prepared and implemented prior to the commencement of construction activities.

11. ALTERNATE TRANSPORT MODE FACILITIES

The proposed development is unlikely to generate any significant additional external pedestrian and bicycle traffic from both staff and parents. Some parents may choose to walk to the centre, but most parents will be driving to and from the centre on the way to and from work. Therefore, no nexus exists for the provision of additional external pedestrian and cycling facilities resulting from the development particularly given the existing pedestrian and cycling facilities around the site are excellent.

The site is already well serviced by a public transport (bus) service, and it would not be expected that the development will generate any significant increase in public transport demand. Therefore, no nexus would exist for additional public transport services or infrastructure resulting from this development.

12. CONCLUSIONS

This traffic and parking assessment for a 128-place long day child care centre on Lot 228 DP1096131, Lot 1 DP784404 & Lot 1 DP779130, 29 – 33 Cessnock Road, Gillieston Heights has concluded the following.

- Existing traffic volumes on the adjacent state and local road network are below the two-way
 mid-block road capacity and environmental capacity thresholds, as relevant, of the existing
 road network indicating the existing adjacent road network has spare capacity to cater for
 development in the area.
- It is expected that the additional traffic generated by the development will be a maximum of 82 vtph in the AM peak period and 50 vtph in the PM peak period.
- The proposed development does not adversely impact on the two-way mid-block traffic flow on the state and local road networks.
- Sidra Intersection modelling shows the current signalised Cessnock Road / Redwood Drive / Heyes Street intersection operates satisfactorily during the AM and PM peak periods and will continue to do so post development through to at least 2035. The impact of the development is minor with no loss of LoS resulting from the development. Therefore, it is reasonable to conclude the development does not adversely impact on the operation of this intersection and as development traffic is further diluted through the road network will not adversely impact on the operation of intersections on the wider state and local road network.
- The proposed access arrangements to the development are satisfactory being suitably safe and would comply with the requirements of Maitland City Council, Australian Standards and Austroads.
- With the proposed development providing 32 car spaces on the site within the site car
 parking, it is considered the development complies with the Maitland DCP car parking rates

therefore has provided sufficient car spaces to meet the likely peak parking demand for the development.

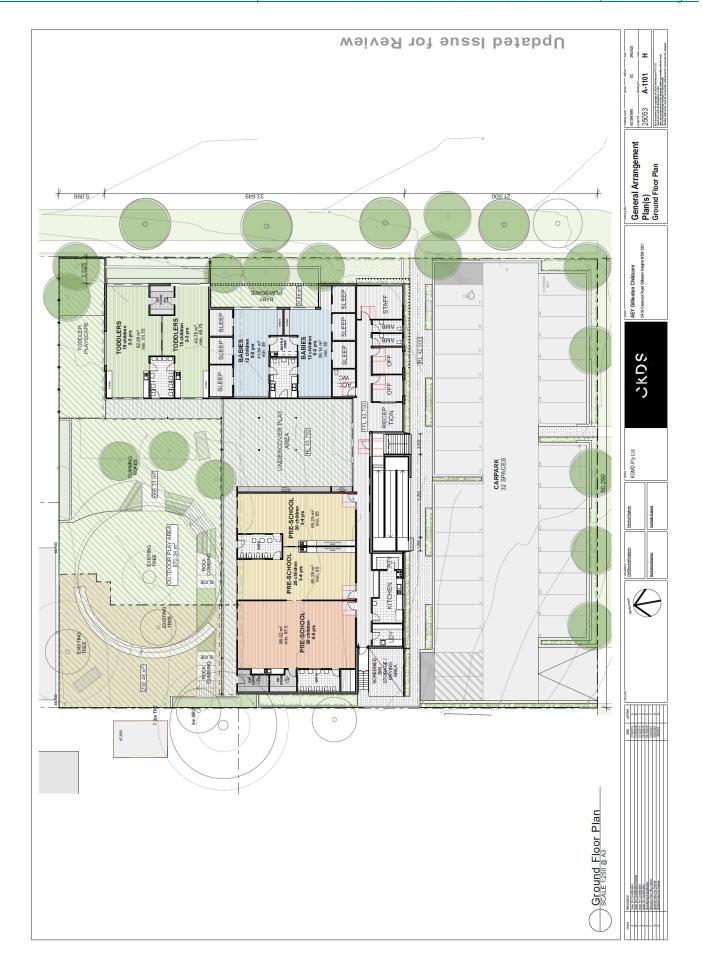
- The proposed car parking design is compliant with AS2890.1-2004 and that overall suitable and sufficient on-site car parking has been provided within the development.
- Overall, it is considered that the proposed servicing facilities provided for the development are satisfactory and suitable for the development.
- That a construction traffic management plan be prepared and implemented prior to the commencement of construction activities.
- No nexus exists for the provision of additional external pedestrian and cycling facilities resulting from the development particularly given the existing pedestrian and cycling facilities around the site are excellent.
- The site is already well serviced by a public transport (bus) service, and it would not be expected that the development will generate any significant increase in public transport demand. Therefore, no nexus would exist for additional public transport services or infrastructure resulting from this development.

13. RECOMENDATION

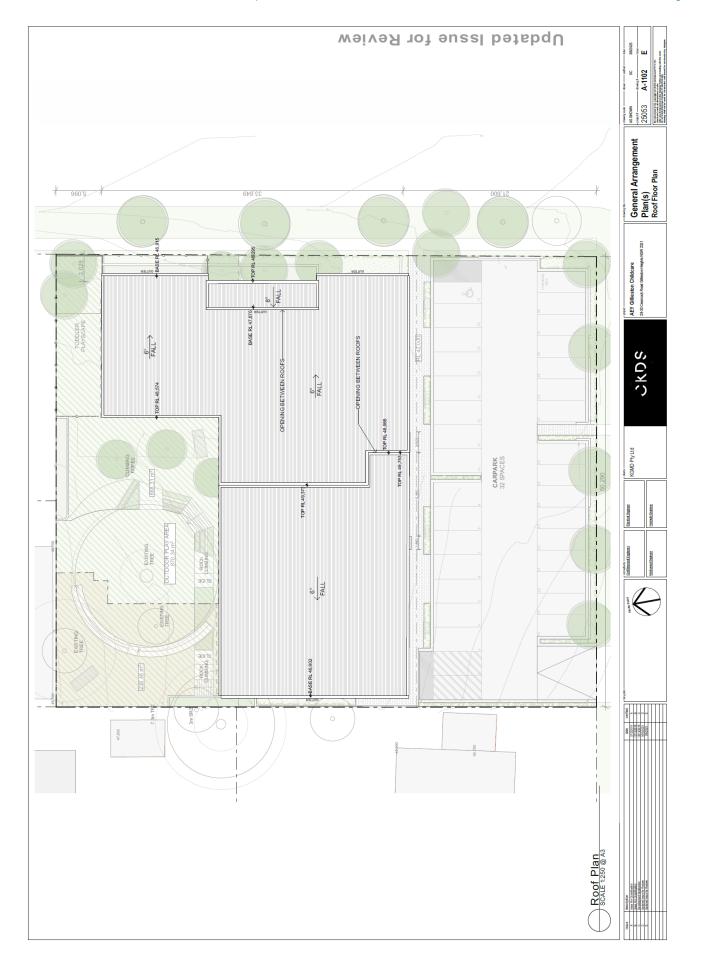
Having carried out this traffic and parking assessment for a proposed 128 place long day childcare centre on proposed Lot 228 DP1096131, Lot 1 DP784404 & Lot 1 DP779130, 29 – 33 Cessnock Road, Gillieston Heights, it is recommended that the proposal can be supported as it will not have an adverse impact on the adjacent road network and would comply with all relevant Maitland City Council, Australian Standards and TfNSW requirements.

JR Garry BE (Civil), Masters of Traffic

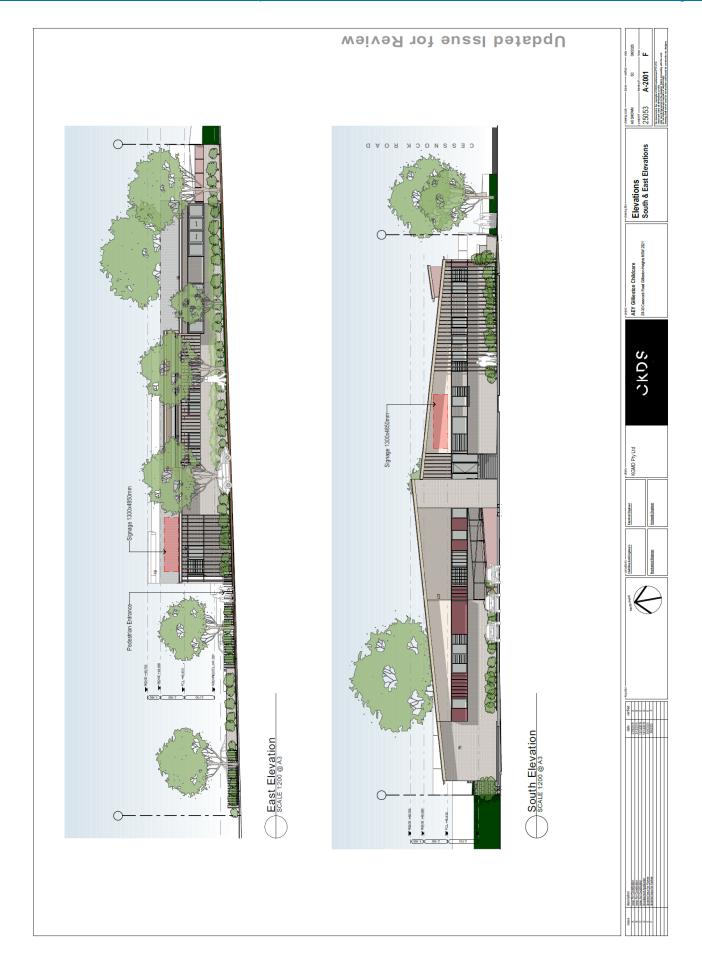
Director

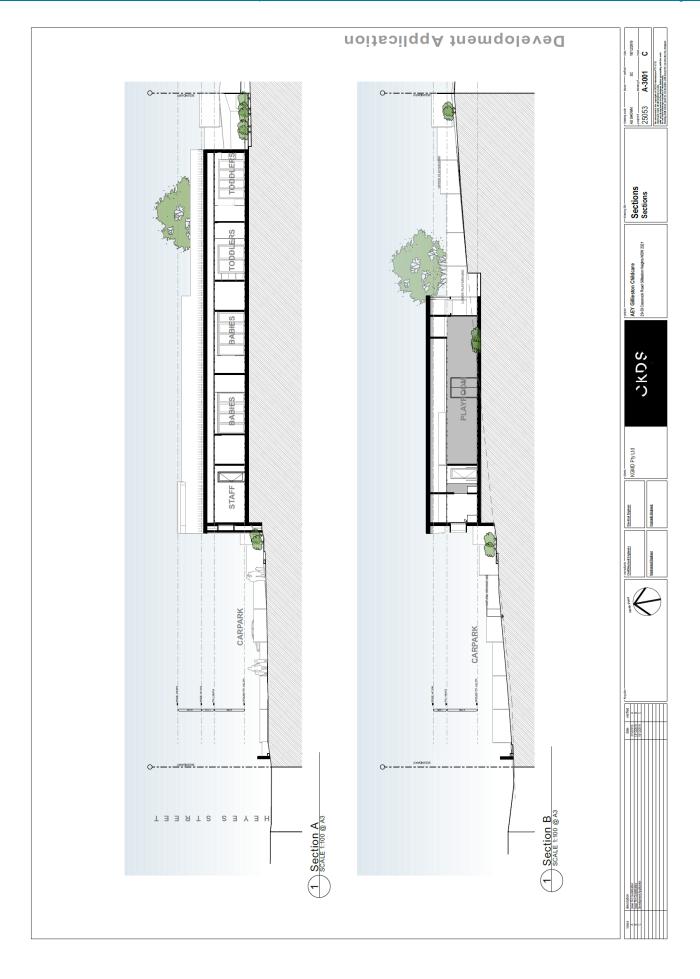

a barrey

Intersect Traffic Pty Ltd



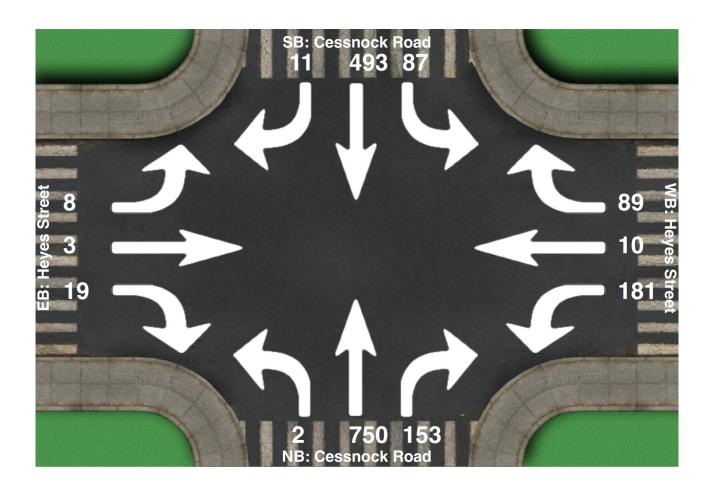
APPENDIX 1 DEVELOPMENT PLANS





APPENDIX 2 TRAFFIC COUNT DATA

Intersection Peak Hour


Location: Cessnock Road at Heyes Street, Gillieston Heights

GPS Coordinates: Lat=-32.764485, Lon=151.527068

Date: 2024-05-29 Day of week: Wednesday

Weather:

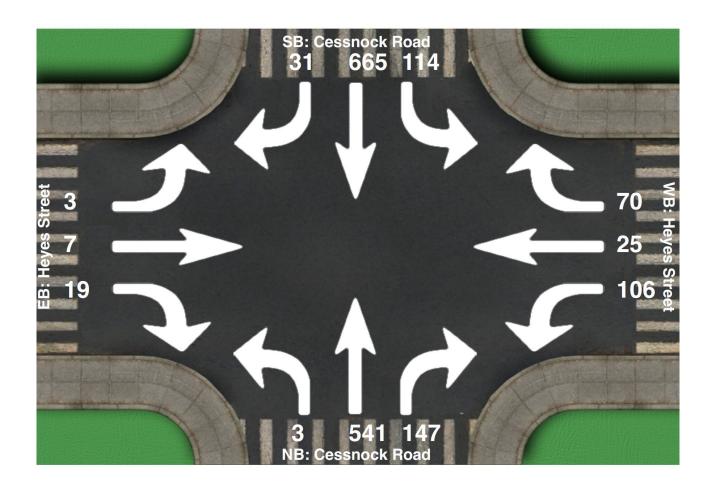
Analyst: Jeff

Intersection Peak Hour

08:00 - 09:00

	SouthBound			Westbound			Northbound			Eastbound			Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Iotai
Vehicle Total	87	493	11	181	10	89	2	750	153	8	3	19	1806
Factor	0.70	0.85	0.55	0.89	0.83	0.93	0.50	0.92	0.83	0.40	0.38	0.68	0.94
Approach Factor 0.92			0.96			0.90			0.75				

Intersection Peak Hour


Location: Cessnock Road at Heyes Street, Gillieston Heights

GPS Coordinates: Lat=-32.764424, Lon=151.527079

Date: 2024-05-28 Day of week: Tuesday

Weather:

Analyst: Jeff

Intersection Peak Hour

15:00 - 16:00

	SouthBound			Westbound			Northbound			Eastbound			Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Iolai
Vehicle Total	114	665	31	106	25	70	3	541	147	3	7	19	1731
Factor	0.89	0.93	0.86	0.83	0.78	0.80	0.38	0.93	0.78	0.38	0.58	0.79	0.94
Approach Factor		0.93			0.87			0.94			0.81		

APPENDIX 3 SIDRA MOVEMENT SUMMARY TABLES

Site: [101] 2024AM (General)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

Cessnock Road / Redwood Drive / Heyes Street signals

Gillieston Heights

May 2024 counts

Site Category: (None)

Delay)

Site Scenario: 1 | Local Volumes

Vehic	le Mo	ovemen	t Perfo	rma	nce										
Mov	Tum	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% Ba	ack Of	Prop.	Eff.	Number	Aver.
ID		Class	FI	ows	FI	ows	Satn	Delay	Service	Que	eue	Qued	Stop (of Cycles	Speed
			[Total	HV]	[Total	HV]				[Veh.	Dist]		Rate t	to Depart	
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Cess	snock Ro	ad												
1	L2	All MCs	2	2.0	2	2.0	0.391	18.4	LOS B	5.6	42.6	0.75	0.64	0.75	47.8
2	T1	All MCs	789	10.0	789	10.0	* 0.682	15.2	LOS B	11.6	88.3	0.83	0.73	0.85	48.5
3	R2	All MCs	161	2.0	161	2.0	* 0.351	13.4	LOS A	1.9	13.3	0.79	1.12	0.79	34.5
Appro	ach		953	8.6	953	8.6	0.682	14.9	LOS B	11.6	88.3	0.83	0.80	0.84	45.4
East:	Redw	ood Drive	<u>;</u>												
4	L2	All MCs	191	2.0	191	2.0	0.682	32.8	LOS C	5.6	39.9	0.99	0.87	1.12	38.5
5	T1	All MCs	11	2.0	11	2.0	* 0.682	26.0	LOS B	5.6	39.9	0.99	0.87	1.12	39.6
6	R2	All MCs	94	2.0	94	2.0	0.335	29.3	LOS C	2.4	17.0	0.93	0.76	0.93	39.5
Appro	ach		295	2.0	295	2.0	0.682	31.4	LOS C	5.6	39.9	0.97	0.83	1.06	38.8
North	Cess	nock Roa	ad												
7	L2	All MCs	92	2.0	92	2.0	0.258	17.5	LOS B	3.5	25.5	0.70	0.66	0.70	46.6
8	T1	All MCs	519	10.0	519	10.0	0.569	13.9	LOSA	8.9	68.0	0.80	0.71	0.80	48.7
9	R2	All MCs	12	2.0	12	2.0	0.028	13.4	LOS A	0.1	0.9	0.74	1.15	0.74	35.1
Appro	ach		622	8.7	622	8.7	0.569	14.4	LOS A	8.9	68.0	0.79	0.71	0.79	48.0
West:	Heye	s Street													
10	L2	All MCs	8	2.0	8	2.0	0.039	29.3	LOS C	0.3	1.9	0.87	0.65	0.87	40.9
11	T1	All MCs	3	2.0	3	2.0	0.039	21.7	LOS B	0.3	1.9	0.87	0.65	0.87	42.2
12	R2	All MCs	20	2.0	20	2.0	0.137	34.3	LOS C	0.6	3.9	0.98	0.68	0.98	37.5
Appro	ach		32	2.0	32	2.0	0.137	31.7	LOS C	0.6	3.9	0.94	0.67	0.94	38.8
All Ve	hicles		1901	7.5	1901	7.5	0.682	17.6	LOS B	11.6	88.3	0.84	0.77	0.86	44.9

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Critical Movement (Signal Timing)

Site: [104] 2024PM (General)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

Cessnock Road / Redwood Drive / Heyes Street signals

Gillieston Heights May 2024 counts Site Category: (None)

Delay)

Site Scenario: 1 | Local Volumes

Vehicle Movement Performance															
Mov ID	Tum	Mov Class	Dem	nand lows		rival lows	Deg. Satn	Aver. Delav	Level of Service		ack Of eue	Prop. Qued		Number of Cycles	Aver. Speed
יוו		Class			[Total		Saur	Delay	Service	[Veh.	Dist]	Queu		o Depart	Speeu
					veh/h	%	v/c	sec		veh	m				km/h
South: Cessnock Road															
1	L2	All MCs	3	2.0	3	2.0	0.226	15.3	LOS B	3.7	28.2	0.59	0.50	0.59	49.7
2	T1	All MCs	569	10.0	569	10.0	0.395	10.9	LOSA	7.2	54.7	0.64	0.55	0.64	51.2
3	R2	All MCs	155		155	2.0	* 0.380	13.9	LOSA	2.0	14.0	0.77	1.13	0.77	34.2
Appro	ach		727	8.3	727	8.3	0.395	11.5	LOS A	7.2	54.7	0.66	0.67	0.66	46.3
East:	Redw	ood Drive													
4	L2	All MCs	112	2.0	112	2.0	0.587	38.3	LOS C	4.4	31.6	0.99	0.81	1.03	36.9
5	T1	All MCs	26	2.0	26	2.0	* 0.587	31.0	LOS C	4.4	31.6	0.99	0.81	1.03	37.9
6	R2	All MCs	74		74		0.328	35.4	LOS C	2.3	16.2	0.95	0.75	0.95	37.0
Appro	ach		212	2.0	212	2.0	0.587	36.4	LOS C	4.4	31.6	0.98	0.79	1.00	37.1
North	Cess	nock Roa	ad												
7	L2	All MCs	120	2.0	120	2.0	0.277	15.6	LOS B	4.7	34.7	0.61	0.63	0.61	47.8
8	T1	All MCs	700	10.0	700	10.0	* 0.612	12.4	LOSA	13.0	98.6	0.74	0.67	0.74	49.7
9	R2	All MCs	33	2.0	33	2.0	0.062	10.8	LOSA	0.3	2.4	0.56	1.14	0.56	37.3
Appro	ach		853	8.6	853	8.6	0.612	12.8	LOSA	13.0	98.6	0.72	0.68	0.72	48.8
West:	Heye	s Street													
10	L2	All MCs	3	2.0	3	2.0	0.044	34.4	LOS C	0.3	2.2	0.90	0.63	0.90	39.3
11	T1	All MCs	7	2.0	7	2.0	0.044	27.7	LOS B	0.3	2.2	0.90	0.63	0.90	40.5
12	R2	All MCs	20	2.0	20	2.0	0.149	39.4	LOS C	0.7	4.6	0.98	0.69	0.98	35.6
Appro	ach		31	2.0	31	2.0	0.149	36.1	LOS C	0.7	4.6	0.95	0.67	0.95	37.0
All Ve	hicles		1822	7.6	1822	7.6	0.612	15.4	LOS B	13.0	98.6	0.73	0.69	0.73	45.9

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Site: [102] 2024AM + development (General)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

Cessnock Road / Redwood Drive / Heyes Street signals

Gillieston Heights May 2024 counts Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 55.0 seconds (Site Optimum Cycle Time - Minimum

Delay)

Site Scenario: 1 | Local Volumes

Vehicle Movement Performance															
Mov	Tum	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% Ba	95% Back Of		Eff.	Number	Aver.
ID		Class	FI	ows	FI	ows	Satn	Delay	Service	Que	eue	Qued	Stop o	of Cycles	Speed
			[Total	HV]	[Total	HV]				[Veh.	Dist]		Rate t	o Depart	
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Cess	snock Ro	ad												
1	L2	All MCs	14	2.0	14	2.0	0.401	18.6	LOS B	5.7	43.5	0.76	0.65	0.76	47.5
2	T1	All MCs	789	10.0	789	10.0	* 0.698	15.7	LOS B	12.1	91.8	0.84	0.75	0.87	48.1
3	R2	All MCs	161	2.0	161	2.0	* 0.354	13.5	LOS A	1.9	13.5	0.80	1.12	0.80	34.4
Appro	ach		964	8.6	964	8.6	0.698	15.3	LOS B	12.1	91.8	0.84	0.81	0.86	45.1
East:	Redw	ood Drive)												
4	L2	All MCs	191	2.0	191	2.0	0.698	32.9	LOS C	5.9	42.2	0.99	0.88	1.14	38.6
5	T1	All MCs	21	2.0	21	2.0	* 0.698	26.1	LOS B	5.9	42.2	0.99	0.88	1.14	39.7
6	R2	All MCs	94	2.0	94	2.0	0.347	29.6	LOS C	2.4	17.1	0.94	0.76	0.94	39.3
Appro	ach		305	2.0	305	2.0	0.698	31.4	LOS C	5.9	42.2	0.98	0.84	1.08	38.9
North	: Cess	nock Roa	ad												
7	L2	All MCs	92	2.0	92	2.0	0.261	17.7	LOS B	3.5	25.7	0.71	0.67	0.71	46.5
8	T1	All MCs	519	10.0	519	10.0	0.575	14.1	LOS A	9.0	68.5	0.81	0.71	0.81	48.6
9	R2	All MCs	22	2.0	22	2.0	0.055	13.7	LOS A	0.2	1.7	0.76	1.13	0.76	34.8
Appro	ach		633	8.6	633	8.6	0.575	14.6	LOS B	9.0	68.5	0.79	0.72	0.79	47.6
West:	Heye	s Street													
10	L2	All MCs	19	2.0	19	2.0	0.106	29.6	LOS C	0.8	5.5	0.88	0.68	0.88	41.2
11	T1	All MCs	14	2.0	14	2.0	0.106	21.9	LOS B	0.8	5.5	0.88	0.68	0.88	42.5
12	R2	All MCs	32	2.0	32	2.0	0.218	34.7	LOS C	0.9	6.3	0.99	0.70	0.99	37.3
Appro	ach		64	2.0	64	2.0	0.218	30.5	LOSC	0.9	6.3	0.93	0.69	0.93	39.4
All Ve	hicles		1966	7.3	1966	7.3	0.698	18.1	LOS B	12.1	91.8	0.85	0.78	0.87	44.5

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Critical Movement (Signal Timing)

Site: [105] 2024PM + development (General)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

Cessnock Road / Redwood Drive / Heyes Street signals

Gillieston Heights May 2024 counts Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 65.0 seconds (Site Optimum Cycle Time - Minimum

Delay

Site Scenario: 1 | Local Volumes

Vehic	cle Mo	ovemen	t Perfo	rma	nce										
Mov	Tum	Mov	Demand		Arrival		Deg.	Aver.	Level of	95% B	95% Back Of		Eff.	Eff. Number	
ID		Class	FI	lows	FI	ows	Satn	Delay	Service	Qu	eue	Qued	Stop o	of Cycles	Speed
			[Total	HV]	[Total	HV]				[Veh.	Dist]		Rate t	o Depart	
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Cess	snock Ro	ad												
1	L2	All MCs	11	2.0	11	2.0	0.229	15.3	LOS B	3.8	28.6	0.60	0.51	0.60	49.6
2	T1	All MCs	569	10.0	569	10.0	0.400	10.9	LOS A	7.3	55.6	0.64	0.55	0.64	51.1
3	R2	All MCs	155	2.0	155	2.0	* 0.380	13.9	LOS A	2.0	14.0	0.77	1.13	0.77	34.2
Appro	ach		735	8.2	735	8.2	0.400	11.6	LOS A	7.3	55.6	0.67	0.67	0.67	46.3
East:	Redw	ood Drive)												
4	L2	All MCs	112	2.0	112	2.0	0.612	38.6	LOS C	4.7	33.3	0.99	0.82	1.06	36.9
5	T1	All MCs	33	2.0	33	2.0	* 0.612	31.3	LOS C	4.7	33.3	0.99	0.82	1.06	37.9
6	R2	All MCs	74	2.0	74	2.0	0.342	35.9	LOS C	2.3	16.3	0.96	0.75	0.96	36.8
Appro	ach		218	2.0	218	2.0	0.612	36.6	LOS C	4.7	33.3	0.98	0.80	1.02	37.0
North	: Cess	nock Roa	ad												
7	L2	All MCs	120	2.0	120	2.0	0.277	15.6	LOS B	4.7	34.7	0.61	0.63	0.61	47.8
8	T1	All MCs	700	10.0	700	10.0	* 0.612	12.4	LOS A	13.0	98.6	0.74	0.67	0.74	49.7
9	R2	All MCs	39	2.0	39	2.0	0.074	10.9	LOS A	0.4	2.8	0.57	1.15	0.57	37.2
Appro	ach		859	8.5	859	8.5	0.612	12.8	LOS A	13.0	98.6	0.71	0.69	0.71	48.7
West:	Heye	s Street													
10	L2	All MCs	9	2.0	9	2.0	0.097	34.9	LOS C	0.7	4.8	0.91	0.67	0.91	38.9
11	T1	All MCs	14	2.0	14	2.0	0.097	28.2	LOS B	0.7	4.8	0.91	0.67	0.91	40.1
12	R2	All MCs	27	2.0	27	2.0	0.211	40.0	LOS C	0.9	6.4	0.99	0.70	0.99	35.4
Appro	ach		51	2.0	51	2.0	0.211	35.8	LOS C	0.9	6.4	0.95	0.69	0.95	37.2
All Ve	hicles		1862	7.5	1862	7.5	0.612	15.7	LOS B	13.0	98.6	0.73	0.69	0.74	45.7

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Site: [103] 2035AM + development (General)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

Cessnock Road / Redwood Drive / Heyes Street signals

Gillieston Heights May 2024 counts Site Category: (None)

Design Life Analysis (Final Year): Results for 11 years

Site Scenario: 1 | Local Volumes

Vehic	cle Mo	ovement	t Perfo	rmai	nce										
Mov	Tum	Mov	Demand		Ar	rival	Deg.	Aver.	Level of	95% B	ack Of	Prop.	Eff.	Number	Aver.
ID		Class	Flows		Flows		Satn	Delay	Service	Que	eue	Qued	Stop o	of Cycles	Speed
			[Total	HV]	[Total	HV]				[Veh.	Dist]		Rate t	o Depart	
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Cess	snock Ro	ad												
1	L2	All MCs	19	2.0	19	2.0	0.470	19.2	LOS B	7.8	59.2	0.77	0.67	0.77	47.1
2	T1	All MCs	982	10.0	982	10.0	* 0.820	20.0	LOS B	19.2	145.8	0.88	0.85	0.99	45.8
3	R2	All MCs	200	2.0	200	2.0	* 0.510	15.5	LOS B	2.6	18.5	0.88	1.07	0.88	32.9
Appro	ach		1201	8.5	1201	8.5	0.820	19.3	LOS B	19.2	145.8	0.88	0.89	0.97	43.0
East:	Redw	ood Drive	<u> </u>												
4	L2	All MCs	237	2.0	237	2.0	0.820	38.9	LOS C	8.8	62.4	1.00	0.98	1.31	36.5
5	T1	All MCs	29	2.0	29	2.0	* 0.820	31.5	LOS C	8.8	62.4	1.00	0.98	1.31	37.6
6	R2	All MCs	116	2.0	116	2.0	0.431	31.8	LOS C	3.3	23.3	0.95	0.78	0.95	38.4
Appro	ach		383	2.0	383	2.0	0.820	36.2	LOS C	8.8	62.4	0.98	0.92	1.20	37.2
North	: Cess	nock Roa	ad												
7	L2	All MCs	114	2.0	114	2.0	0.305	18.0	LOS B	4.6	34.3	0.70	0.67	0.70	46.3
8	T1	All MCs	645	10.0	645	10.0	0.673	15.2	LOS B	12.6	96.0	0.83	0.74	0.84	47.9
9	R2	All MCs	31	2.0	31	2.0	0.090	16.1	LOS B	0.4	2.7	0.83	1.10	0.83	33.3
Appro	ach		790	8.5	790	8.5	0.673	15.6	LOS B	12.6	96.0	0.81	0.75	0.82	46.9
West:	Heye	s Street													
10	L2	All MCs	26	2.0	26	2.0	0.137	32.4	LOS C	1.2	8.3	0.88	0.70	0.88	40.6
11	T1	All MCs	19	2.0	19	2.0	0.137	23.3	LOS B	1.2	8.3	0.88	0.70	0.88	41.8
12	R2	All MCs	44	2.0	44	2.0	0.276	37.5	LOS C	1.3	9.5	0.99	0.71	0.99	36.3
Appro	ach		89	2.0	89	2.0	0.276	33.0	LOS C	1.3	9.5	0.94	0.70	0.94	38.6
All Ve	hicles		2462	7.3	2462	7.3	0.820	21.2	LOS B	19.2	145.8	0.88	0.84	0.95	42.9

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Critical Movement (Signal Timing)

Site: [106] 2035PM + development (General)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

Cessnock Road / Redwood Drive / Heyes Street signals

Gillieston Heights May 2024 counts Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 60.0 seconds (Site Practical Cycle Time)

Design Life Analysis (Final Year): Results for 11 years

Site Scenario: 1 | Local Volumes

Vehicle Movement Performance															
Mov	Tum	Mov	Dem			rival	Deg.	Aver.	Level of					Number	Aver.
ID		Class		ows	FI Total	OWS	Satn	Delay	Service	Que [Veh.	eue Dist 1	Qued		of Cycles to Depart	Speed
							v/c	sec		t ven. veh	Dist j m		Rate	о рерап	km/h
veh/h % veh/h % South: Cessnock Road							VIC	366	_	veii	- "			_	KIIVII
1		All MCs		2.0	15	2.0	0.315	16.8	LOS B	4.9	37.4	0.67	0.58	0.67	48.6
2	T1	All MCs	708		708		0.548	12.9	LOSA	9.9	75.1	0.74	0.64	0.74	49.8
3	R2	All MCs	192		192		* 0.568	17.7	LOS B	3.1	21.8	0.95	1.03	0.95	31.7
Appro		All WOS	915		915		0.568	14.0	LOSA	9.9	75.1	0.78	0.72	0.78	44.4
East:	Redw	ood Drive	:												
4	L2	All MCs	139	2.0	139	2.0	0.696	37.8	LOS C	5.7	40.3	1.00	0.87	1.15	37.6
5	T1	All MCs	45	2.0	45	2.0	* 0.696	29.4	LOS C	5.7	40.3	1.00	0.87	1.15	38.7
6	R2	All MCs	92		92	2.0	0.391	33.2	LOS C	2.6	18.7	0.96	0.76	0.96	37.9
Appro	ach		276	2.0	276	2.0	0.696	34.9	LOS C	5.7	40.3	0.99	0.84	1.08	37.9
North	Cess	nock Roa	ad												
7	L2	All MCs	149	2.0	149	2.0	0.380	17.2	LOS B	6.2	45.6	0.70	0.68	0.70	46.8
8	T1	All MCs	870	10.0	870	10.0	* 0.838	20.3	LOS B	21.6	164.5	0.90	0.92	1.04	45.0
9	R2	All MCs	54	2.0	54	2.0	0.121	12.4	LOS A	0.6	4.1	0.68	1.18	0.68	35.9
Appro	ach		1073	8.5	1073	8.5	0.838	19.4	LOS B	21.6	164.5	0.86	0.90	0.98	44.7
West:	Heye	s Street													
10	L2	All MCs	13	2.0	13	2.0	0.119	32.5	LOS C	0.9	6.1	0.90	0.68	0.90	40.1
11	T1	All MCs	19	2.0	19	2.0	0.119	25.3	LOS B	0.9	6.1	0.90	0.68	0.90	41.4
12	R2	All MCs	38	2.0	38	2.0	0.283	37.9	LOS C	1.2	8.3	0.99	0.71	0.99	36.1
Appro	ach		70	2.0	70	2.0	0.283	33.4	LOS C	1.2	8.3	0.95	0.69	0.95	38.2
All Ve	hicles		2334	7.4	2334	7.4	0.838	19.5	LOS B	21.6	164.5	0.85	0.82	0.91	43.5

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)